Interesting Feature (interesting + feature)

Distribution by Scientific Domains


Selected Abstracts


Neuropeptide and neurohormone precursors in the pea aphid, Acyrthosiphon pisum

INSECT MOLECULAR BIOLOGY, Issue 2010
J. Huybrechts
Abstract Aphids respond to environmental changes by developing alternative phenotypes with differing reproductive modes. Parthenogenetic reproduction occurs in spring and summer, whereas decreasing day lengths in autumn provoke the production of sexual forms. Changing environmental signals are relayed by brain neuroendocrine signals to the ovarioles. We combined bioinformatic analyses with brain peptidomics and cDNA analyses to establish a catalogue of pea aphid neuropeptides and neurohormones. 42 genes encoding neuropeptides and neurohormones were identified, of which several were supported by expressed sequence tags and/or peptide mass analyses. Interesting features of the pea aphid peptidome are the absence of genes coding for corazonin, vasopressin and sulfakinin and the presence of 10 different genes coding insulin related peptides, one of which appears to be very abundantly expressed. [source]


Memory of Social Partners in Hermit Crab Dominance

ETHOLOGY, Issue 3 2005
Francesca Gherardi
We investigated the possibility that invertebrates recognize conspecific individuals by studying dominance relationships in the long-clawed hermit crab, Pagurus longicarpus. We conducted three sets of laboratory experiments to define the time limits for acquiring and maintaining memory of an individual opponent. The results reveal two characteristics that make individual recognition in this species different from standard associative learning tasks. Firstly, crabs do not require training over many repeated trials; rather, they show evidence of recognition after a single 30-min exposure to a stimulus animal. Secondly, memory lasts for up to 4 d of isolation without reinforcement. A third interesting feature of individual recognition in this species is that familiar opponents are recognized even before the formation of a stable hierarchical rank. That is, recognition seems to be relatively independent of repeated wins (rewards) or losses (punishments) in a dominance hierarchy. The experimental protocol allowed us to show that this species is able to classify conspecifics into two ,heterogeneous subgroups', i.e. familiar vs. unfamiliar individuals, but not to discriminate one individual of a group from every other conspecific from ,a unique set of cues defining that individual'. In other words, we demonstrated a ,binary', and not a ,true', individual recognition. However, 1 d of interactions with different crabs did not erase the memory of a former rival, suggesting that P. longicarpus uses a system of social partner discrimination more refined than previously shown. [source]


Efficient finite element simulation of crack propagation using adaptive iterative solvers

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 2 2006
A. Meyer
Abstract This paper delivers an efficient solution technique for the numerical simulation of crack propagation of 2D linear elastic formulations based on finite elements together with the conjugate gradient method in order to solve the corresponding linear equation systems. The developed iterative numerical approach using hierarchical preconditioners has the interesting feature that the hierarchical data structure will not be destroyed during crack propagation. Thus, it is possible to simulate crack advance in a very effective numerical manner, including adaptive mesh refinement and mesh coarsening. Test examples are presented to illustrate the efficiency of the given approach. Numerical simulations of crack propagation are compared with experimental data. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Nonlinear adaptive tracking-control synthesis for functionally uncertain systems

INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, Issue 2 2010
Zenon Zwierzewicz
Abstract The paper is concerned with the problem of adaptive tracking system control synthesis. It is assumed that a nonlinear, feedback linearizable object dynamics (model structure) is (partially) unknown and some of its nonlinear characteristics can be approximated by a sort of functional approximators. It has been proven that proportional state feedback plus parameter adaptation are able to assure its asymptotic stability. This form of controller permits online compensation of unknown model nonlinearities and exogenous disturbances, which results in satisfactory tracking performance. An interesting feature of the system is that the whole process control is performed without requisite asymptotic convergence of approximator parameters to the postulated ,true' values. It has been noticed that the parameters play rather a role of slack variables on which potential errors (that otherwise would affect the state variables) cumulate. The system's performance has been tested via Matlab/Simulink simulations via an example of ship path-following problem. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Coupled atomic charge selectivity for optimal ligand-charge distributions at protein binding sites

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 16 2006
Sathesh Bhat
Abstract Charge optimization as a tool for both analyzing and enhancing binding electrostatics has become an attractive approach over the past few years. An interesting feature of this method for molecular design is that it provides not only the optimal charge magnitudes, but also the selectivity of a particular atomic center for its optimal charge. The current approach to compute the charge selectivity at a given atomic center of a ligand in a particular binding process is based on the binding-energy cost incurred upon the perturbation of the optimal charge distribution by a unit charge at the given atomic center, while keeping the other atomic partial charges at their optimal values. A limitation of this method is that it does not take into account the possible concerted changes in the other atomic charges that may incur a lower energetic cost than perturbing a single charge. Here, we describe a novel approach for characterizing charge selectivity in a concerted manner, taking into account the coupling between the ligand charge centers in the binding process. We apply this novel charge selectivity measure to the celecoxib molecule, a nonsteroidal anti-inflammatory agent binding to cyclooxygenase 2 (COX2), which has been recently shown to also exhibit cross-reactivity toward carbonic anhydrase II (CAII), to which it binds with nanomolar affinity. The uncoupled and coupled charge selectivity profiles over the atomic centers of the celecoxib ligand, binding independently to COX2 and CAII, are analyzed comparatively and rationalized with respect to available experimental data. Very different charge selectivity profiles are obtained for the uncoupled versus coupled selectivity calculations. © 2006 Wiley Periodicals, Inc. J Comput Chem, 2006 [source]


Reactive changes of interstitial glia and pinealocytes in the rat pineal gland challenged with cell wall components from gram-positive and -negative bacteria

JOURNAL OF PINEAL RESEARCH, Issue 1 2005
Ya Fen Jiang-Shieh
Abstract:, Lipopolysaccharide (LPS), the major proinflammatory component of gram-negative bacteria, is well known to induce sepsis and microglial activation in the CNS. On the contrary, the effect of products from gram-positive bacteria especially in areas devoid of blood,brain barrier remains to be explored. In the present study, a panel of antibodies, namely, OX-6, OX-42 and ED-1 was used to study the response of microglia/macrophages in the pineal gland of rats given an intravenous LPS or lipoteichoic acid (LTA). These antibodies recognize MHC class II antigens, complement type 3 receptors and unknown lysosomal proteins in macrophages, respectively. In rats given LPS (50 ,g/kg) injection and killed 48 h later, the cell density and immunoexpression of OX-6, OX-42 and ED-1 in pineal microglia/macrophages were markedly increased. In rats receiving a high dose (20 mg/kg) of LTA, OX-42 and OX-6, immunoreactivities in pineal microglia/macrophages were also enhanced, but that of ED-1 was not. In addition, both bacterial toxins induced an increase in astrocytic profiles labelled by glial fibrillary acid protein. An interesting feature following LPS or LTA treatment was the lowering effect on serum melatonin, enhanced serotonin immunolabelling and cellular vacuolation as studied by electron microscopy in pinealocytes. The LPS- or LTA-induced vacuoles appeared to originate from the granular endoplasmic reticulum as well as the Golgi saccules. The present results suggest that LPS and LTA could induce immune responses of microglia/macrophages and astroglial activation in the pineal gland. Furthermore, the metabolic and secretory activity of pinealocytes was modified by products from both gram-positive and -negative bacteria. [source]


Some preconditioners for the CFIE equation of electromagnetism

MATHEMATICAL METHODS IN THE APPLIED SCIENCES, Issue 17 2008
David P. Levadoux
Abstract We present three weak parametrices of the operator of the combined field integral equation (CFIE). An interesting feature of these parametrices is that they are compatible with different discretization strategies and hence allow for the construction of efficient preconditioners dedicated to the CFIE. Their numerical analysis shows that a regularization process acting at the continuous level of the equation is also effective at the discrete level if the mesh size tends to zero. First numerical tests confirm this effect and preconditioning is observed indeed. Furthermore, we show that the underlying operator of CFIE satisfies a uniform discrete Inf,Sup condition that allows one to predict an original convergence result for the numerical solution of CFIE to the exact one. Copyright © 2008 John Wiley & Sons, Ltd. [source]


The absolute center of a network,

NETWORKS: AN INTERNATIONAL JOURNAL, Issue 2 2004
Dov Dvir
Abstract This paper presents a new algorithm for finding an absolute center (minimax criterion) of an undirected network with n nodes and m arcs based on the concept of minimum-diameter trees. Local centers and their associated radii are identified by a monotonically increasing sequence of lower bounds on the radii. Computational efficiency is addressed in terms of worst-case complexity and practical performance. The complexity of the algorithm is 0(n2 ,g n + mn). In practice, because of its very rapid convergence, the algorithm renders the problem amenable even to manual solution for quite large networks, provided that the minimal-distance matrix is given. Otherwise, evaluation of this matrix is the effective computational bottleneck. An interesting feature of the algorithm and its theoretical foundations is that it synthesizes and generalizes some well-known results in this area, particularly Halpern's lower bound on the local radius of a network and properties of centers of tree networks. © 2004 Wiley Periodicals, Inc. [source]


Evolution of Protein Targeting into "Complex" Plastids: The "Secretory Transport Hypothesis"

PLANT BIOLOGY, Issue 4 2003
O. Kilian
Abstract: In algae different types of plastids are known, which vary in pigment content and ultrastructure, providing an opportunity to study their evolutionary origin. One interesting feature is the number of envelope membranes surrounding the plastids. Red algae, green algae and glaucophytes have plastids with two membranes. They are thought to originate from a primary endocytobiosis event, a process in which a prokaryotic cyanobacterium was engulfed by a eukaryotic host cell and transformed into a plastid. Several other algal groups, like euglenophytes and heterokont algae (diatoms, brown algae, etc.), have plastids with three or four surrounding membranes, respectively, probably reflecting the evolution of these organisms by so-called secondary endocytobiosis, which is the uptake of a eukaryotic alga by a eukaryotic host cell. A prerequisite for the successful establishment of primary or secondary endocytobiosis must be the development of suitable protein targeting machineries to allow the transport of nucleus-encoded plastid proteins across the various plastid envelope membranes. Here, we discuss the possible evolution of such protein transport systems. We propose that the secretory system of the respective host cell might have been the essential tool to establish protein transport into primary as well as into secondary plastids. [source]


THE HONG KONG CURRENCY BOARD'S DEFENSE AGAINST FINANCIAL MARKET PRESSURE: A BEHAVIORAL PERSPECTIVE

THE DEVELOPING ECONOMIES, Issue 2 2002
Miron MUSHKAT
Exchange rate regimes do not operate in an institutional vacuum, even when the scope for exercising policy discretion is distinctly limited. The Hong Kong linked exchange rate system is no exception. An interesting feature of the institutional environment in this case, not highlighted previously, is the apparent divergence in the assumptions of policymakers and market players regarding the merits of this mechanism in particular and currency boards in general. The corollary is that the Hong Kong monetary authorities need to intensify their efforts to disseminate relevant information, focusing especially on targets in the financial sector. [source]


Analysis of B function in legumes: PISTILLATA proteins do not require the PI motif for floral organ development in Medicago truncatula

THE PLANT JOURNAL, Issue 1 2009
Reyes Benlloch
Summary The B-class gene PISTILLATA (PI) codes for a MADS-box transcription factor required for floral organ identity in angiosperms. Unlike Arabidopsis, it has been suggested that legume PI genes contribute to a variety of processes, such as the development of floral organs, floral common petal,stamen primordia, complex leaves and N-fixing root nodules. Another interesting feature of legume PI homologues is that some of them lack the highly conserved C-terminal PI motif suggested to be crucial for function. Therefore, legume PI genes are useful for addressing controversial questions on the evolution of B-class gene function, including how they may have diverged in both function and structure to affect different developmental processes. However, functional analysis of legume PI genes has been hampered because no mutation in any B-class gene has been identified in legumes. Here we fill this gap by studying the PI function in the model legume species Medicago truncatula using mutant and RNAi approaches. Like other legume species, M. truncatula has two PI homologues. The expression of the two genes, MtPI and MtNGL9, has strongly diverged, suggesting differences in function. Our analyses show that these genes are required for petal and stamen identity, where MtPI appears to play a predominant role. However, they appear not to be required for development of the nodule, the common primordia or the complex leaf. Moreover, both M. truncatula PI homologues lack the PI motif, which indicates that the C-terminal motif is not essential for PI activity. [source]


Structure of laminin-binding adhesin (Lmb) from Streptococcus agalactiae

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 12 2009
Preethi Ragunathan
Adhesion/invasion of pathogenic bacteria is a critical step in infection and is mediated by surface-exposed proteins termed adhesins. The crystal structure of recombinant Lmb, a laminin-binding adhesin from Streptococcus agalactiae, has been determined at 2.5,Å resolution. Based on sequence and structural homology, Lmb was placed into the cluster 9 family of the ABC (ATP-binding cassette) transport system. The structural organization of Lmb closely resembles that of ABC-type solute-binding proteins (SBPs), in which two structurally related globular domains interact with each other to form a metal-binding cavity at the interface. The bound zinc in Lmb is tetrahedrally coordinated by three histidines and a glutamate from both domains. A comparison of Lmb with other metal transporters revealed an interesting feature of the dimerization of molecules in the crystallographic asymmetric unit in all zinc-binding transporters. A closer comparison of Lmb with the zinc-binding ZnuA from Escherichia coli and Synechocystis 6803 suggested that Lmb might undergo a unique structural rearrangement upon metal binding and release. The crystal structure of Lmb provides an impetus for further investigations into the molecular basis of laminin binding by human pathogens. Being ubiquitous in all serotypes of group B streptococcus (GBS), the structure of Lmb may direct the development of an efficient vaccine. [source]


VARIATIONAL BAYESIAN ANALYSIS FOR HIDDEN MARKOV MODELS

AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, Issue 2 2009
C. A. McGrory
Summary The variational approach to Bayesian inference enables simultaneous estimation of model parameters and model complexity. An interesting feature of this approach is that it also leads to an automatic choice of model complexity. Empirical results from the analysis of hidden Markov models with Gaussian observation densities illustrate this. If the variational algorithm is initialized with a large number of hidden states, redundant states are eliminated as the method converges to a solution, thereby leading to a selection of the number of hidden states. In addition, through the use of a variational approximation, the deviance information criterion for Bayesian model selection can be extended to the hidden Markov model framework. Calculation of the deviance information criterion provides a further tool for model selection, which can be used in conjunction with the variational approach. [source]


Case of the hidden assumptions

BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION, Issue 1 2002
Daniel E. Koshland Jr
The Ogston "three point attachment" model to explain how proteins discriminate between d and l isomers was originally proposed to explain the asymmetric distribution of isotopes that passed through a symmetric intermediate. It has been a standard in textbooks and the literature until the recent finding of Mesecar and Koshland [6] that it could not explain data of isocitrate dehydrogenase and other enzymes and must be replaced by a "four location model." The hidden assumptions that are part of the Ogston model are seen to be an interesting feature of the scientific method that can both advance and hinder scientific progress. [source]


A Two-Part Joint Model for the Analysis of Survival and Longitudinal Binary Data with Excess Zeros

BIOMETRICS, Issue 2 2008
Dimitris Rizopoulos
Summary Many longitudinal studies generate both the time to some event of interest and repeated measures data. This article is motivated by a study on patients with a renal allograft, in which interest lies in the association between longitudinal proteinuria (a dichotomous variable) measurements and the time to renal graft failure. An interesting feature of the sample at hand is that nearly half of the patients were never tested positive for proteinuria (,1g/day) during follow-up, which introduces a degenerate part in the random-effects density for the longitudinal process. In this article we propose a two-part shared parameter model framework that effectively takes this feature into account, and we investigate sensitivity to the various dependence structures used to describe the association between the longitudinal measurements of proteinuria and the time to renal graft failure. [source]


Bis(fluoromesityl) Palladium Complexes, Archetypes of Steric Crowding and Axial Protection by ortho Effect , Evidence for Dissociative Substitution Processes , Observation of 19F,19F Through-Space Couplings

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 11 2004
Camino Bartolomé
Abstract Bisarylated complexes trans -[Pd(Fmes)2(SR2)2] [Fmes = 2,4,6-tris(trifluoromethyl)phenyl (fluoromesityl); SR2 = SMe2, tht; tht = tetrahydrothiophene] are precursors for various bisarylated fluoromesityl palladium(II) complexes by ligand-substitution reactions. Boiling under reflux in acetonitrile gives the mixed complexes trans -[Pd(Fmes)2(NCMe)(SR2)], whereas boiling under reflux in toluene leads to trans -[PdCl2L2] (L = PMe3, tBuNC, pTol-NC, 4-MePy), in the presence of neutral monodentate ligands, or to (NnBu4)[trans -Pd(Fmes)2I(SR2)] when treated with (NnBu4)I. trans -[Pd(Fmes)2(SMe2)2] reacts with bidentate ligands, also boiling under reflux in toluene, to give [Pd(Fmes)2(L,L)] [L,L = Me2bipy, 2,2, - biquinolyl, ,2N,N, -OCPy2, dppm (Ph2PCH2PPh2), dppe (Ph2PCH2CH2PPh2), pte (PhSCH2CH2SPh), ,2S,N -SPPh2Py, ,2O,N -OPPhPy2], or the bimetallic complex [Pd(Fmes)2(,-1,N:1,2,O:2,N -Py2MeCO)Pd(Fmes)(SMe2)] (characterized by X-ray diffractometry) when treated with (OH)(CH3)CPy2. The crowding associated with two Fmes groups produces several interesting features: (1) trans complexes are preferred over cis complexes, against the expected electronic preferences; (2) the low-temperature NMR spectra of several complexes, or the X-ray diffraction structure of [Pd(Fmes)2(2,2, - biquinolyl)], reveal significant structural distortions associated with steric crowding; (3) the need for boiling under reflux in the synthesis suggests a dissociative substitution mechanism, which is unknown so far for Pd; (4) some of the complexes show 19F,19F through-space couplings. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004) [source]


Aspects on the relief of living surfaces using atomic force microscopy allow "art" to imitate nature

INTEGRATIVE ZOOLOGY (ELECTRONIC), Issue 3 2010
Rosa POLYMENI
Abstract The visualization of the surface of biological samples using an atomic force microscope reveals features of the external relief and can resolve very fine and detailed features of the surface. We examined specimens from the skin of the amphibians Salamandra salamandra Linnaeus, 1758, Lyciasalamandra luschani basoglui Baran & Atatür, 1980 and Mesotriton alpestris Laurenti, 1768, and from the surface of pollen grains of the plant species Cyclamen graecum Link, 1835 and Cistus salviifolius Linnaeus, 1753, which exhibit certain interesting features, imaged at the nanoscale level. It is likely that the relief influences the attributes of the interfaces between the tissues and the environment. We found that the microsculpture increases in size the surface of the examined tissues and this might be particularly important for their performance in the field. Microsculpturing of amphibians' skin may affect water regulation, dehydration and rehydration, and cutaneous gas exchange. Pollen grain relief might affect the firmness of the contact between pollen surface and water droplets. High resolution imaging of the external relief showed that roughening might induce wetting and influence the water status of the specimens. In addition, roughness affects the radius of water droplets retained in between the projections of the external relief. Roughness of the tissues was highly correlated with their vertical distance, whereas surface distances were highly correlated with horizontal distances. By enabling a more detailed characterization of the external sculptures, through sophisticated techniques, a more comprehensive examination of the samples indicates similarities among different living tissues, originated from different kingdoms, which can be attributed to environmental conditions and physiological circumstances. [source]


Gas phase behavior of radical cations of perfluoroalkyl-1,2,4-triazines: an experimental and theoretical study

JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 9 2009
Gianluca Giorgi
Abstract Electron ionization mass spectrometry and low-energy collision-induced decomposition reactions occurring in a tridimensional ion trap, together with density functional theory (DFT) calculations on neutrals, even- and odd-electron cations, have been used to study the gas-phase ion chemistry of a series of perfluoroalkyl-1,2,4-triazines. Loss of oxygen, due to thermal degradation occurring before ionization, likely involving the hydroxylamino group, has been observed. Compounds having a carbonyl group at position 6 of the triazine ring fragment in the source by elimination of NO followed by HF or CO. The decomposition pathways occurring due to CID experiments have shown interesting features depending on the nature and structure of precursor ions. Most of them involve elimination of endocyclic atoms, thereby producing contraction of the original six-membered ring or formation of acyclic structures. DFT (B3LYP/6-31G(d,p)) calculations have been used for evaluating structure, stability and properties of neutral and ionic species involved in gas-phase processes. In particular, it has been calculated that in the molecular ion the unpaired electron is mainly located on the exocyclic nitrogen, while the positive charge is on the C(6) carbon atom. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Synthesis and characterization of sulfonated copolyethersulfones

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 14 2010
Filippo Samperi
Abstract The present article deals with the synthesis and characterization of some sulfonated copolyethersulfones. The synthetic approach differs from the post sulfonation approach traditionally reported in the literature. The synthetic procedure is based on the use of sulfonated monomers which are then reacted with previously synthesized telechelic hydoxy-ended poly (ether sulpnone)s. Combining the MALDI-TOF MS and 1H NMR analyses, with SEC-Viscometry and TGA measurements, we demonstrate a powerful tool for characterizing the chemical composition, end chains, degree of sulfonation (DS) and molecular mass distribution (MMD) of disulfonated poly(arylene ether-sulfone) copolymers. The characterization techniques allowed to determine the exact nature of the copolymers synthesized and to reveal some interesting features about the reaction. DMA data show that the glass transition temperature of sulfonated copolymers with similar DS increase as raise their MMD. Copolymers with a DS of 10,11 mol % reach a Tg of 244,246 °C. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3010,3023, 2010 [source]


Recent advancement on polybenzoxazine,A newly developed high performance thermoset

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 21 2009
Yusuf Yagci
Abstract Polybenzoxazine is a newly developed addition polymerized phenolic system, having a wide range of interesting features and the capability to overcome several shortcomings of conventional novolac and resole type phenolic resins. They exhibit (i) near zero volumetric change upon curing, (ii) low water absorption, (iii) for some polybenzoxazines Tg much higher than cure temperature, (iv) high char yield, (v) no strong acid catalysts required for curing, (vi) release of no byproduct during curing and also possess thermal and flame retarding properties of phenolics along with the mechanical performance. Though benzoxazine based materials possess several advantages, they have not yet became very attractive to the industries. To improve the mechanical properties and processibility several strategies have been reported including (i) synthesis of benzoxazine monomers with additional functionality, (ii) incorporation of benzoxazine in polymer chain, and (iii) benzoxazine based composites or alloys. In this article, we have discussed about the recent development of benzoxazine chemistry. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5565,5576, 2009 [source]


The Push Tree problem

NETWORKS: AN INTERNATIONAL JOURNAL, Issue 4 2004
Frédéric Havet
Abstract In this article, we introduce the Push Tree problem, which exposes the tradeoffs between the use of push and pull mechanisms in information distribution systems. One of the interesting features of the Push Tree problem is that it provides a smooth transition between the minimum Steiner Tree and the Shortest Path problems. We present initial complexity results and analyze heuristics. Moreover, we discuss what lessons can be learned from the static and deterministic Push Tree problem for more realistic scenarios characterized by high uncertainty and changing information request and update patterns. © 2004 Wiley Periodicals, Inc. NETWORKS, Vol. 44(4), 281,291 2004 [source]


Quantum and thermal effects in the double exchange ferromagnet

PHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 2 2003
N. Shannon
Abstract The physics of the ferromagnetic phase of the "double exchange" model has been widely discussed in the context of the CMR manganites. Usually, the double exchange ferromagnet is treated is classically, by mapping it onto an effective Heisenberg model. However this mapping does not permit a correct treatment of quantum or thermal fluctuation effects, and the results obtained lack many of the interesting features seen in experiments on the manganites. Here we outline a new analytic approach to systematically evaluating quantum and thermal corrections to the magnetic and electronic properties of the double exchange ferromagnet. [source]


Regulation of the catalytic behaviour of L-form starch phosphorylase from sweet potato roots by proteolysis

PHYSIOLOGIA PLANTARUM, Issue 4 2002
Han-Min Chen
Starch phosphorylase (SP) is an enzyme used for the reversible phosphorolysis of the ,-glucan in plant cells. When compared to its isoform in an animal cell, glycogen phosphorylase, a peptide containing 78 amino acids (L78) is inserted in the centre of the low-affinity type starch phosphorylase (L-SP). We found that the amino acid sequence of L78 had several interesting features including the presence of a PEST region, which serves as a signal for rapid degradation. Indeed, most L-SP molecules isolated from mature sweet potato roots were nicked in the middle of a molecule, but still retained their tertiary or quaternary structures, as well as full catalytic activity. The nicking sites on the L78 were identified by amino acid sequencing of these peptides, which also enabled us to propose a proteolytic process for L-SP. Enzyme kinetic studies of L-SP in the direction of starch synthesis indicated that the Km decreased during the proteolytic process when starch was used as the limiting substrate, but the Km for the other substrate (Glc-1-P) increased. On the other hand, the maximum velocities (Vmax) increased for both substrates. Mobility of the nicked L-SP was retarded on a native polyacrylamide gel containing soluble starch, indicating the increased affinity for starch. Results in this study suggested that L78 and its proteolytic modifications might play a regulatory role on the catalytic behaviour of L-SP in starch biosynthesis. [source]


Parameter Estimation in the Error-in-Variables Models Using the Gibbs Sampler

THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 1 2006
Jessada J. Jitjareonchai
Abstract Least squares and maximum likelihood techniques have long been used in parameter estimation problems. However, those techniques provide only point estimates with unknown or approximate uncertainty information. Bayesian inference coupled with the Gibbs Sampler is an approach to parameter estimation that exploits modern computing technology. The estimation results are complete with exact uncertainty information. The Error-in-Variables model (EVM) approach is investigated in this study. In it, both dependent and independent variables contain measurement errors, and the true values and uncertainties of all measurements are estimated. This EVM set-up leads to unusually large dimensionality in the estimation problem, which makes parameter estimation very difficult with classical techniques. In this paper, an innovative way of performing parameter estimation is introduced to chemical engineers. The paper shows that the method is simple and efficient; as well, complete and accurate uncertainty information about parameter estimates is readily available. Two real-world EVM examples are demonstrated: a large-scale linear model and an epidemiological model. The former is simple enough for most readers to understand the new concepts without difficulty. The latter has very interesting features in that a Poisson distribution is assumed, and a parameter with known distribution is retained while other unknown parameters are estimated. The Gibbs Sampler results are compared with those of the least squares. Les techniques de moindres carrés et de similitude maximale sont utilisées depuis longtemps dans les problèmes d'estimation des paramètres. Cependant, ces techniques ne fournissent que des estimations ponctuelles avec de l'information sur les incertitudes inconnue ou approximative. L'inférence de Bayes couplée à l'échantillonneur de Gibbs est une approche d'estimation paramétrique qui exploite la technologie moderne de calcul par ordinateur. Les résultats d'estimation sont complets avec l'information exacte sur les incertitudes. L'approche du modèle d'erreurs dans les variables (EVM) est étudiée dans cette étude. Dans cette méthode, les variables dépendantes et indépendantes contiennent des erreurs de mesure, et les véritables valeurs et incertitudes de toutes les mesures sont estimées. Ce système EVM mène à une dimensionnalité inhabituellement grande dans le problème d'estimation, ce qui rend l'estimation de paramètres très difficile avec les techniques classiques. Dans cet article, une façon innovante d'effectuer l'estimation de paramètres est présentée aux ingénieurs de génie chimique. On montre dans cet article que la méthode est simple et efficace; de même, de l'information complète et précise sur l'incertitude d'estimation de paramètres est accessible. Deux exemples d'EVM en situation réelle sont montrés, soient un modèle linéaire de grande échelle et un modèle épidémiologique. Le premier modèle est suffisamment simple pour la plupart des lecteurs pour comprendre les nouveaux concepts sans difficulté. Le deuxième possède des caractéristiques extrêmement intéressantes, en ce sens qu'on suppose une distribution de Poisson et qu'un paramètre ayant une distribution connue est retenu pendant que d'autres paramètres non connus sont estimés. Les résultats de l'échantillonneur de Gibbs sont comparés à ceux de la méthode des moindres carrés. [source]


Geophysical surveys of Bury Walls hill fort, Shropshire

ARCHAEOLOGICAL PROSPECTION, Issue 4 2003
Ruth E. Murdie
Abstract The hill fort of Bury Walls in Shropshire has been surveyed extensively by topographical and geophysical methods with the aims of recovering evidence for occupation, characterising the use of the hill fort and clarifying the chronological development of the site. Topographic surveys delineated the current extent of the fort and its massive fortifications. Resistance surveys showed several interesting features inside the fort, including extensive use of the geology to make flattened ledges in an otherwise quite uneven fort interior, a possible cross dyke, interior roads and traces of possible dwellings. Magnetic gradient surveys again showed clearly the possible cross dyke. Additional geophysical surveys attempted to define the depths of these features found in the resistance and magnetic gradient maps. This study, although not fully answering the original aims, provides a useful basis for future excavation. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Mitosis in diatoms: rediscovering an old model for cell division

BIOESSAYS, Issue 8 2009
Alessandra De Martino
Abstract Diatoms are important protists that generate one fifth of the oxygen produced annually on earth. These aquatic organisms likely derived from a secondary endosymbiosis event, and they display peculiar genomic and structural features that reflect their chimeric origin. Diatoms were one of the first models of cell division and these early studies revealed a range of interesting features including a unique acentriolar microtubule-organising centre. Unfortunately, almost nothing is known at the molecular level, in contrast to the advances in other experimental organisms. Recently the full genome sequences of two diatoms have been annotated and molecular tools have been developed. These resources offer new possibilities to re-investigate the mechanisms of cell division in diatoms by recruiting information from more intensively studied organisms. A renaissance of the topic is further justified by the current interest in diatoms as a source of biofuels and for understanding massive diatom proliferation events in response to environmental stimuli. [source]


Recent developments in effector biology of filamentous plant pathogens

CELLULAR MICROBIOLOGY, Issue 6 2010
Ricardo Oliva
Summary Filamentous pathogens, such as plant pathogenic fungi and oomycetes, secrete an arsenal of effector molecules that modulate host innate immunity and enable parasitic infection. It is now well accepted that these effectors are key pathogenicity determinants that enable parasitic infection. In this review, we report on the most interesting features of a representative set of filamentous pathogen effectors and highlight recent findings. We also list and describe all the linear motifs reported to date in filamentous pathogen effector proteins. Some of these motifs appear to define domains that mediate translocation inside host cells. [source]


pH-Controllable Supramolecular Systems

CHEMISTRY - AN ASIAN JOURNAL, Issue 3 2009
Ken Cham-Fai Leung Prof.
Abstract Proton, all that matters! This Focus Review surveys representative examples of pH-controllable supramolecular systems with interesting features and state-of-the-art applications, which can lead to the construction of meaningful molecular machines for electronic and biological applications that can be controlled by simple perturbation with acid and base. This Focus Review surveys representative examples of pH-controllable supramolecular systems with interesting features and state-of-the-art applications such as 1),conformational changes within individual molecules; 2),folding/unfolding of polymers; 3),simultaneous binding of cations and anions; 4),logic function; 5),ON,OFF switchable colorimetric sensing; 6),translocation of macrocycle-in-rotaxane molecules; 7),large-scale movement within molecules; and 8),regulation of the substrate flow in nanocontainers. In particular, systems will be discussed that involve: pH-induced conformational changes of a resorcinarene cavitand and a bis(iron porphyrin) complex; pH control in assembly and disassembly of supramolecular systems stabilized with different major noncovalent interactions; pH-driven movements of interlocked molecules involving rotaxanes, molecular elevators, and molecular muscles; and, finally, multicomponent supramolecular systems immobilized on solid supports as pH-responsive nanovalves for the controlled release of specific substrates. Recent advances in the understanding of pH-controllable supramolecular systems have led to the construction of meaningful molecular machines for electronic and biological applications that are amenable to control by simple perturbation with acids and bases. [source]