Home About us Contact | |||
Interesting Effects (interesting + effects)
Selected AbstractsSphingosine-1-phosphate and FTY720 as anti-atherosclerotic lipid compoundsEUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 3 2007M. Tölle Abstract All stages of atherosclerosis have been identified as a chronic vascular inflammatory disease. In the last few years there is increasing evidence that endogenous lysophospholipids such as sphingosine-1-phosphate (S1P) have potent anti-inflammatory properties. The S1P analogue FTY720 that has been developed as a potent, orally active, immunosuppressant in the field of transplantation and autoimmune disease has interesting effects on inflammatory processes in the arterial vessel wall. S1P targets five specific S1P receptors (S1P1,5), which are ubiquitously expressed. S1P1,3 receptor expression is identified in arterial vessels. S1P and FTY720 show potent silencing effects on some vascular proinflammatory mechanisms in endothelial and vascular smooth muscle cells. In addition, the interaction of monocytes with the vessel wall is inhibited. As shown recently, FTY720 can effectively reduce the progression of atherosclerosis in apolipoprotein E-deficient mice having a high-cholesterol diet. It is not entirely clear which S1P receptor subtype is mainly involved in this process. However, it is currently speculated that the S1P3 and probably the S1P1 is involved in the anti-atherosclerotic effects of FTY720. This review summarizes the current knowledge about S1P- and FTY720-effects on mechanisms of vascular inflammatory disease. In addition S1P receptor subtypes are identified which might be interesting for molecular drug targeting. [source] Studies on 4,7-di-substitution effects of one ligand in [Ru(Phen)3]2 with DFT methodJOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 4 2002Kangcheng Zheng Abstract Studies on the complex [Ru(phen)3]2+ (phen = 1,10-phenanthroline) and its derivatives with 4,7-di-substitution on one ligand(phen) were carried out using the DFT method at the B3LYP/LanL2DZ level of theory. The trends in the substituent effects caused by the electron-pushing group (OH) and the electron-withdrawing group (F), on the electronic structures and the related properties, for example, the energies and the components of some frontier molecular orbitals, the spectroscopy properties, and the net charge populations of some main atoms of the complexes, etc., have been investigated. The computational results show that the substituents have some interesting effects on the electronic structures and the related properties of the complexes. First, according to the analysis of components of LUMO of the complexes, the electron-withdrawing group (F) can activate the main ligand (the substituted ligand, i.e., 2R-phen) and passivate the coligands, on the contrary, the electron-pushing group (OH) can activate the coligands and passivate the main ligand in the first electronic excited states of complexes. Second, both the electron-pushing group (OH) and the electron-withdrawing group (F) can cause a red shift in the electronic ground bands. Third, the characteristics of the atomic net charge populations on the main ligand can also be analyzed in detail by means of a schematic map expressed by several series of arrowheads based on the law of polarity alternation and the idea of polarity interference. The most negative charges are populated on N1, the next most net negative charges are populated on C3 among the skeleton atoms for the three complexes, etc. The computational results can be better used to explain some experimental phenomena and trends. © 2002 Wiley Periodicals, Inc. J Comput Chem 4: 436,443, 2002; DOI 10.1002/jcc.10038 [source] Mapping of quantitative trait loci affecting behaviour in swineANIMAL GENETICS, Issue 4 2009G. Reiner Summary Behavioural indices in vertebrates are under genetic control at least to some extent. In spite of significant behavioural problems in farm animals, information on the genetic background of behaviour is sparse. The aim of this study was to map QTL for behavioural indices in swine under healthy conditions and after infection with Sarcocystis miescheriana, as behaviour can be significantly influenced by disease. This well-described parasite model subsequently leads to acute (day 14 p.i.), subclinical (day 28 p.i.) and chronic disease (day 42 p.i.), allowing the study and comparison of the behaviour of pigs under four different states of health or disease. The study was based on a well-described Pietrain/Meishan F2 family that has recently allowed the detection of QTL for disease resistance. We have mapped six genome-wide significant and 24 chromosome-wide significant QTL for six behavioural indices in swine. Six of these QTL (i.e. 20% of total QTL) showed effects on behavioural traits of the healthy pigs (day 0). Some of them (QTL on SSC11 and 18) lost influence on behavioural activities during disease, while the effects of others (QTL on SSC5, SSC8) partly remained during the whole experiment, although with different effects on the distinct behavioural indices. The disease model has been of high relevance to detect effects of gene loci on behavioural indices. Considering the importance of segregating alleles and environmental conditions that allow the identification of the phenotype, we conclude that there are indeed QTL with interesting effects on behavioural indices in swine. [source] Chemical Derivatisation of Multiwalled Carbon Nanotubes Using Diazonium Salts,CHEMPHYSCHEM, Issue 11 2004Charles G. R. Heald A facile and versatile modification strategy: A chemically activated method of covalently derivatising carbon powder, via the chemical reduction of aryl diazonium salts with hypophosphorous acid, to include the covalent derivatisation of multiwalled carbon nanotubes (MWCNTs) is demonstrated. The specific molecular environments of 1-anthraquinonyl moieties attached to MWCNTs (see picture) produce interesting effects. [source] |