Home About us Contact | |||
Intercross Population (intercross + population)
Selected AbstractsQuantitative Trait Loci for BMD in an SM/J by NZB/BlNJ Intercross Population and Identification of Trps1 as a Probable Candidate Gene,,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 9 2008Naoki Ishimori Abstract Identification of genes that regulate BMD will enhance our understanding of osteoporosis and could provide novel molecular targets for treatment or prevention. We generated a mouse intercross population and carried out a quantitative trait locus (QTL) analysis of 143 female and 124 male F2 progeny from progenitor strains SM/J and NZB/BlNJ using whole body and vertebral areal BMD (aBMD) as measured by DXA. We found that both whole body and vertebral aBMD was affected by two loci on chromosome 9: one with a significant epistatic interaction on distal chromosome 8 and the other with a sex-specific effect. Two additional significant QTLs were identified on chromosome 12, and several suggestive ones were identified on chromosomes 5, 8, 15, and 19. The chromosome 9, 12, and 15 loci have been previously identified in other crosses. SNP-based haplotype analysis of the progenitor strains identified blocks within the QTL region that distinguish the low allele strains from the high allele strains, significantly narrowing the QTL region and reducing the possible candidate genes to 98 for chromosome 9, 31 for chromosome 12, and only 2 for chromosome 15. Trps1 is the most probable candidate gene for the chromosome 15 QTL. The sex-specific effects may help to elucidate the BMD differences between males and females. This study shows the power of statistical modeling to resolve linked QTLs and the use of haplotype analysis in narrowing the list of candidates. [source] Genetic control of resistance to hepatocarcinogenesis by the mouse Hpcr3 locus,HEPATOLOGY, Issue 2 2008Giacomo Manenti The genome of the BALB/c mouse strain provides alleles that dominantly inhibit hepatocellular tumor development in F1 crosses with the highly hepatocarcinogenesis-susceptible C3H/He strain. Genome-wide linkage analysis using a 1536,single-nucleotide polymorphism array in a (C3H/He × BALB/c)F2 intercross population treated with urethane to induce hepatocellular tumor development revealed a locus with a major role in the resistance to hepatocarcinogenesis. This locus, designated hepatocarcinogen resistance 3 (Hpcr3) and mapping to central chromosome 15, showed a linkage at LOD score = 16.52 and accounted for 40% of the phenotypical variance. The BALB/c-derived allele at Hpcr3 reduced tumor-occupied area of the liver up to 25-fold, in a semidominant way. Additional minor loci were mapped to chromosomes 1, 10, and 18. A gene expression profile of normal adult mouse liver showed a significant association with susceptibility of BALB/c, C3H/He, and F1 mice to hepatocarcinogenesis and identified the genes expressed in the Hpcr3 locus region; moreover, this analysis implicated the E2F1 pathway in the modulation of the phenotype susceptibility to hepatocarcinogenesis. Conclusion: These findings, indicating the complex genetics of dominant resistance to hepatocarcinogenesis, represent a step toward the identification of the genes underlying this phenotype. (HEPATOLOGY 2008;48:617,623.) [source] Quantitative Trait Loci for BMD in an SM/J by NZB/BlNJ Intercross Population and Identification of Trps1 as a Probable Candidate Gene,,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 9 2008Naoki Ishimori Abstract Identification of genes that regulate BMD will enhance our understanding of osteoporosis and could provide novel molecular targets for treatment or prevention. We generated a mouse intercross population and carried out a quantitative trait locus (QTL) analysis of 143 female and 124 male F2 progeny from progenitor strains SM/J and NZB/BlNJ using whole body and vertebral areal BMD (aBMD) as measured by DXA. We found that both whole body and vertebral aBMD was affected by two loci on chromosome 9: one with a significant epistatic interaction on distal chromosome 8 and the other with a sex-specific effect. Two additional significant QTLs were identified on chromosome 12, and several suggestive ones were identified on chromosomes 5, 8, 15, and 19. The chromosome 9, 12, and 15 loci have been previously identified in other crosses. SNP-based haplotype analysis of the progenitor strains identified blocks within the QTL region that distinguish the low allele strains from the high allele strains, significantly narrowing the QTL region and reducing the possible candidate genes to 98 for chromosome 9, 31 for chromosome 12, and only 2 for chromosome 15. Trps1 is the most probable candidate gene for the chromosome 15 QTL. The sex-specific effects may help to elucidate the BMD differences between males and females. This study shows the power of statistical modeling to resolve linked QTLs and the use of haplotype analysis in narrowing the list of candidates. [source] Quantitative trait loci for fatty acid composition in longissimus dorsi and abdominal fat: results from a White Duroc × Erhualian intercross F2 populationANIMAL GENETICS, Issue 2 2009T. Guo Summary A whole-genome scan was performed on 660 F2 animals including 250 barrows and 410 gilts in a White Duroc × Erhualian intercross population to detect quantitative trait loci (QTL) for fatty acid composition in the longissimus dorsi muscle and abdominal fat. A total of 153 QTL including 63 genome-wide significant QTL and 90 suggestive effects were identified for the traits measured. Significant effects were mainly evident on pig chromosomes (SSC) 4, 7, 8 and X. No association was detected on SSC3 and 11. In general, the QTL detected in this study showed distinct effects on fatty acid composition in the longissimus muscle and abdominal fat. The QTL for fatty acid composition in abdominal fat did not correspond to those identified previously in backfat and the majority of QTL for the muscle fatty acid composition were mapped to chromosomal regions different from previous studies. Two regions on SSC4 and SSC7 showed significant pleiotropic effects on monounsaturated (MUFA) and polyunsaturated fatty acid (PUFA) in both longissimus muscle and abdominal fat. Another two QTL with significant multi-faceted effects on MUFA and PUFA in the longissimus muscle were found each on SSC8 and SSCX. Chinese Erhualian alleles were associated with increased ratios of MUFA to saturated fatty acid at most of the QTL detected, showing beneficial effect in terms of human health. [source] |