Home About us Contact | |||
Interannual Time Scale (interannual + time_scale)
Selected AbstractsTrends in the southern oscillation phenomenon and Australian rainfall and changes in their relationshipINTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 3 2004Ramasamy Suppiah Abstract An attempt has been made to investigate decadal-scale trends in Australian rainfall and in the southern oscillation index (SOI) and their influence on the relationship between them. Monthly rainfall data from high-quality stations in Australia (from 1900 to 1995), India, Sri Lanka and Tahiti are used. The relationship between the SOI and Australian rainfall is positive, but shows decadal-scale variations during the past century. Although there were extended and severe El Niño events in the early 1990s and in 1997, Australia did not experience the expected severe rainfall deficiencies characteristic of previous events. However, severe drought conditions over eastern Australia were associated with a moderate El Niño event during 2002,03. Long-term fluctuations of March,May (MAM) rainfall show high-frequency variations, but trends during June,August (JJA), September,November (SON) and December,February (DJF) show low-frequency or decadal-scale variations. Trends and multi-decadal fluctuations in all-Australian spring (SON) and summer (DJF) rainfall are strongly dominated by rainfall trend fluctuations in northern and eastern Australia. Austral summer rainfall shows an increasing trend during the 1980s and 1990s, particularly in Queensland and New South Wales, despite the occurrence of extended and severe El Niños. However, some parts of New South Wales and Queensland experienced severe rainfall deficiencies during 2002,03 in conjunction with an El Niño event. The relationship between the SOI and rainfall on the interannual time scale is strong when the SOI and rainfall follow the same direction, but it is weak when they follow opposite directions on a decadal-time scale. The poor correlation during the 1920s and 1930s was due to a slightly increasing trend in the SOI and a stronger decreasing trend in rainfall. A weakening in the relationship between the SOI and rainfall in recent years, after the mid-1970s, is due to a small increase in rainfall in the 1980s and 1990s and a strong decrease in the SOI. Rainfall trends were enhanced (stronger decreases or increases) when the influence of the SOI (or El Niño-southern oscillation (ENSO)) was removed. Enhanced increases and decreases are particularly strong during SON and DJF, when the ENSO phenomenon is at the mature stage and also the influence on Australian rainfall is strong. The increasing trend in rainfall during the 1980s and 1990s in some parts of eastern Australia and the decreasing trend in the SOI result in more rainfall for a given SOI compared with the same SOI during the previous period, i.e. before the mid-1970s. A similar analysis was carried out for two periods, before and after 1972, for Tahiti, India and Sri Lanka. The upward or downward shift in regression lines is very clear during the season, that shows a strong relationship between rainfall and the SOI. Moreover, strengthening or weakening of the relationship between rainfall and the SOI is largely dependent on their multi-decadal variations and trends during the past century. Increases in rainfall during the 1980s and the 1990s and decreases in the SOI have weakened their relationship, both in Australia and India. Such a relationship gives more rainfall for a given SOI after 1973. The pattern was reversed for Sri Lanka, where rainfall during the second intermonsoon season has decreased. Analyses of trends in temperature at Darwin and Tahiti and of rainfall over Australia, India, Tahiti and Sri Lanka suggest a regional-scale change in climate, whereas the SOI reflects a change in the large-scale circulation pattern over the Indo-Pacific region after the mid-1970s. Copyright © 2004 Royal Meteorological Society [source] Spring northward retreat of Eurasian snow cover relevant to seasonal and interannual variations of atmospheric circulationINTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 6 2003Hiroaki Ueda Abstract An observational study is made of the seasonal and interannual variations of spring snow-disappearance over the Eurasian continent and the circulation mechanisms causing those variations. The spring northward retreat of the snow boundary over the East European Plain (EEP) between 30 and 60° E is faster (0.4° per day) than to the east of the Ural Mountain range (0.3° per day). These migrations of the snow boundary lag behind the appearance of the surface air temperature 0 °C by about 1 to 5 pentads. The analyses of the atmospheric heat and moisture budgets showed that the seasonal intrusion of warm air associated with southwesterly winds is primarily responsible for the rapid snowmelt in March and April over the EEP. In addition, the adiabatic heating of descending air plays a secondary role in the snowmelt in mid-March. On an interannual time scale, horizontal warm advection also plays an essential role in the spring northward retreat of snow cover extent. The present study confirms the previous finding that the surface air temperature anomalies, produced during the seasonal snow-disappearance period, diminished in May, suggesting a weak dynamical linkage between the EEP snow cover and Asian summer monsoon. Copyright © 2003 Royal Meteorological Society [source] Simulated and observed fluxes of sensible and latent heat and CO2 at the WLEF-TV tower using SiB2.5GLOBAL CHANGE BIOLOGY, Issue 9 2003Ian Baker Abstract Three years of meteorological data collected at the WLEF-TV tower were used to drive a revised version of the Simple Biosphere (SiB 2.5) Model. Physiological properties and vegetation phenology were specified from satellite imagery. Simulated fluxes of heat, moisture, and carbon were compared to eddy covariance measurements taken onsite as a means of evaluating model performance on diurnal, synoptic, seasonal, and interannual time scales. The model was very successful in simulating variations of latent heat flux when compared to observations, slightly less so in the simulation of sensible heat flux. The model overestimated peak values of sensible heat flux on both monthly and diurnal scales. There was evidence that the differences between observed and simulated fluxes might be linked to wetlands near the WLEF tower, which were not present in the SiB simulation. The model overestimated the magnitude of the net ecosystem exchange of CO2 in both summer and winter. Mid-day maximum assimilation was well represented by the model, but late afternoon simulations showed excessive carbon uptake due to misrepresentation of within-canopy shading in the model. Interannual variability was not well simulated because only a single year of satellite imagery was used to parameterize the model. [source] Modern and Holocene hydrographic characteristics of the shallow Kara Sea shelf (Siberia) as reflected by stable isotopes of bivalves and benthic foraminiferaBOREAS, Issue 3 2005JOHANNES SIMSTICH River discharge of Ob and Yenisei to the Kara Sea is highly variable on seasonal and interannual time scales. River water dominates the shallow bottom water near the river mouths, making it warmer and less saline but seasonally and interannually more changeable than bottom water on the deeper shelf. This hydrographic pattern shows up in measurements and modelling, and in stable isotope records (,18 O, ,13 C) along the growth axis of bivalve shells and in multiple analyses of single benthic foraminiferal shells. Average isotope ratios increase, but sample-internal variability decreases with water depth and distance from river mouths. However, isotope records of bivalves and foraminifera of a sediment core from a former submarine channel of Yenisei River reveal a different pattern. The retreat of the river mouth from this site due to early Holocene sea level rise led to increasing average isotope values up core, but not to the expected decrease of the in-sample isotope variability. Southward advection of cold saline water along the palaeo-river channel probably obscured the hydrographic variability during the early Holocene. Later, when sediment filled the channel, the hydrographic variability at the core location remained low, because the shallowing proceeded synchronously with the retreat of the river mouth. [source] |