Intestinal Epithelium (intestinal + epithelium)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Decoding epithelial signals: critical role for the epidermal growth factor receptor in controlling intestinal transport function

ACTA PHYSIOLOGICA, Issue 1 2009
D. F. McCole
Abstract The intestinal epithelium engages in bidirectional transport of fluid and electrolytes to subserve the physiological processes of nutrient digestion and absorption, as well as the elimination of wastes, without excessive losses of bodily fluids that would lead to dehydration. The overall processes of intestinal ion transport, which in turn drive the secretion or absorption of water, are accordingly carefully regulated. We and others have identified the epidermal growth factor receptor (EGFr) as a critical regulator of mammalian intestinal ion transport. In this article, we focus on our studies that have uncovered the intricate signalling mechanisms downstream of EGFr that regulate both chloride secretion and sodium absorption by colonocytes. Emphasis will be placed on the EGFr-associated regulatory pathways that dictate the precise outcome to receptor activation in response to signals that may seem, on their face, to be quite similar if not identical. The concepts to be discussed underlie the ability of the intestinal epithelium to utilize a limited set of signalling effectors to produce a variety of outcomes suitable for varying physiological and pathophysiological demands. Our findings therefore are relevant not only to basic biological principles, but also may ultimately point to new therapeutic targets in intestinal diseases where ion transport is abnormal. [source]


Correlation between Musashi-1 and c-hairy-1 expression and cell proliferation activity in the developing intestine and stomach of both chicken and mouse

DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 8 2005
Rieko Asai
Musashi-1 (Msi-1) is an RNA-binding protein that plays key roles in the maintenance of neural stem cell states and in their differentiation into neural cells. Msi-1 has also been proposed as a candidate marker gene of mammalian intestinal stem cells and their immediate lineages. In this study, we examined Msi-1 expression in the small intestine and the stomach of both chicken and mouse during embryonic, fetal and postnatal development. In addition, we analyzed the expression of c-hairy-1, a chicken homologue of mouse Hes1, and assessed the proliferative activity of the cells expressing both of these factors. Significantly, during the development of these digestive organs in both species Msi-1 expression showed dynamic changes, suggesting that it is important for digestive organ development, particularly for epithelial differentiation. Based on our observations of the expression patterns of Msi-1 and c-hairy-1 in the adult small intestine, we speculate that Msi-1 is also a stem cell marker of the chicken small intestinal epithelium. [source]


Tissue-specific metabolic activation and mutagenicity of 3-nitrobenzanthrone in MutaÔMouse,

ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 8 2008
Guosheng Chen
Abstract 3-Nitrobenzanthrone (3-NBA) is a mutagen and suspected human carcinogen detected in diesel exhaust, airborne particulate matter, and urban soil. We investigated the tissue specific mutagenicity of 3-NBA at the lacZ locus of transgenic MutaÔMouse following acute single dose or 28-day repeated-dose oral administration. In the acute high dose (50 mg/kg) exposure, increased lacZ mutant frequency was observed in bone marrow and colonic epithelium, but not in liver and bladder. In the repeated-dose study, a dose-dependent increase in lacZ mutant frequency was observed in bone marrow and liver (2- and 4-fold increase above control), but not in lung or intestinal epithelium. In addition, a concentration-dependent increase in mutant frequency (8.5-fold above control) was observed for MutaÔMouse FE1 lung epithelial cells exposed in vitro. 1-Nitropyrene reductase, 3-NBA reductase, and acetyltransferase activities were measured in a variety of MutaÔMouse specimens in an effort to link metabolic activation and mutagenicity. High 3-NBA nitroreductase activities were observed in lung, liver, colon and bladder, and detectable N -acetyltransferase activities were found in all tissues except bone marrow. The relatively high 3-NBA nitroreductase activity in MutaÔMouse tissues, as compared with those in Salmonella TA98 and TA100, suggests that 3-NBA is readily reduced and activated in vivo. High 3-NBA nitroreductase levels in liver and colon are consistent with the elevated lacZ mutant frequency values, and previously noted inductions of hepatic DNA adducts. Despite an absence of induced lacZ mutations, the highest 3-NBA reductase activity was detected in lung. Further studies are warranted, especially following inhalation or intratracheal exposures. Environ. Mol. Mutagen., 2008. Published 2008 Wiley-Liss, Inc. [source]


Benzo[a]pyrene bioavailability from pristine soil and contaminated sediment assessed using two in vitro models

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 3 2007
Luba Vasiluk
Abstract A major route of exposure to hydrophobic organic contaminants (HOCs), such as benzo[a]pyrene (BaP), is ingestion. Matrix-bound HOCs may become bioavailable after mobilization by the gastrointestinal fluids followed by sorption to the intestinal epithelium. The purpose of this research was to measure the bioavailability of [14C]-BaP bound to pristine soils or field-contaminated sediment using an in vitro model of gastrointestinal digestion followed by sorption to human enterocytes (Caco-2 cells) or to a surrogate membrane, ethylene vinyl acetate (EVA) thin film. Although Caco-2 cells had a twofold higher lipid-normalized fugacity capacity than EVA, [14C]-BaP uptake by Caco-2 lipids and EVA thin film demonstrated a linear relationship within the range of BaP concentrations tested. These results suggest that EVA thin film is a good membrane surrogate for passive uptake of BaP. The in vitro system provided enough sensitivity to detect matrix effects on bioavailability; after 5 h, significantly lower concentrations of [14C]-BaP were sorbed into Caco-2 cells from soil containing a higher percentage of organic matter compared to soil with a lower percentage of organic matter. The [14C]-BaP desorption rate from Caco-2 lipids consistently was twofold higher than from EVA thin film for all matrices tested. The more rapid kinetics observed with Caco-2 cells probably were due to the greater surface area available for absorption/desorption in the cells. After 5 h, the uptake of BaP into Caco-2 lipid was similar in live and metabolically inert Caco-2 cells, suggesting that the primary route of BaP uptake is by passive diffusion. Moreover, the driving force for uptake is the fugacity gradient that exists between the gastrointestinal fluid and the membrane. [source]


Modulation of dendritic cell phenotype and functionin an in vitro model of the intestinal epithelium

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 4 2006
Matt Butler
Abstract A network of dendritic cells (DC) can be detected in close proximity to the epithelial cells overlying Peyer's patches in the gut. Intestinal DC show distinct phenotypes as compared to DC from the systemic lymph nodes (relatively low MHC and costimulatory molecules and high IL-10 and TGF,) and may play a role in maintaining tolerance to enteric antigens. We show that a similar phenotype is induced in the presence of a polarised epithelial cell monolayer in vitro. Monocyte-derived DC were co-cultured with Caco-2 intestinal epithelial monolayers for 24,h. Co-culture resulted in DC with reduced expression of MHC class,II, CD86, and CD80, and poor T,cell stimulatory capacity. Cytokine profiles showed reduced levels of inflammatory cytokine production, and co-cultured DC were less sensitive to stimulation via Toll-like receptors (TLR2, 4, and 6) as a result of increased levels of autocrine TGF, production. However, phenotypic changes in co-cultured DC could not be blocked by removal of apoptotic cells or addition of anti-TGF, antibodies, suggesting that other soluble factors are involved in DC modulation. Thus, polarised epithelial cell monolayers create a ,tolerogenic' environment which modulates the activity of DC. These results highlight the regulatory importance of the epithelial microenvironment at mucosal surfaces. [source]


CCL25/CCR9 promotes the induction and function of CD103 on intestinal intraepithelial lymphocytes

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 10 2004
Anna Ericsson
Abstract The integrin CD103 and the chemokine receptor CCR9 are co-expressed on small intestinal CD8+ intraepithelial lymphocytes (IEL), naïve murine CD8+ T cells and by a small population of effector/memory CD8+ T cells, indicating a potential role for CCR9 in regulating CD103 expression and function. Here, we demonstrate that CD103, in contrast to CCR9, is down-regulated on CD8+ T cells following their activation in mesenteric lymph nodes and that effector CD8+ T cells upon initial entry into the small intestinal epithelium are CCR9+CD103,. CD103 was rapidly induced on wild-type CD8+ T cells subsequent to their entry into the small intestinal epithelium, however, CCR9,/, CD8+ T cells exhibited a significant delay in CD103 induction at this site. In addition, the CCR9 ligand, CCL25, that is constitutively expressed in the small intestinal epithelium, induced transient, dose-dependent and pertussis toxin-sensitive CD103-mediated adhesion of CD8+ small intestinal IEL to a murine E-cadherin human Fc (mEFc) fusion protein. Together, these results demonstrate a role for CCR9/CCL25 in promoting the induction and function of CD103 on CD8+ IEL and suggest that this chemokine receptor/chemokine pair may function to regulate lymphocyte-epithelial interactions in the small intestinal mucosa. [source]


PRECLINICAL STUDY: Disposition of ,9 tetrahydrocannabinol in CF1 mice deficient in mdr1a P-glycoprotein

ADDICTION BIOLOGY, Issue 3-4 2008
Laurence Bonhomme-Faivre
ABSTRACT P-glycoprotein (P-gp) plays a major role in drug efflux. All the transported substrates are more or less hydrophobic and amphiphatic in nature. Being lipophilic, ,9 tetrahydrocannabinol (THC), the main cannabis component, could be a potential P-gp substrate. The aim of this project was to determine the contribution of the mdr1a gene product to THC disposition. Therefore, oral THC and digoxin (substrate test for P-gp) pharmacokinetics have been investigated in the intestinal epithelium and in the brain capillary endothelium of CF1 mdr1a (,/,) mice (mice naturally deficient in P-gp). These pharmacokinetics were compared to THC and digoxin oral pharmacokinetics in wild type mice mdr1a (+/+) (not P-gp deficient). The application of Bailer's method showed that THC total exposure measured by the area under the plasma concentration time curve was 2.17-fold higher in CF1 mice naturally deficient in P-gp than in wild type mice after oral administration of 25 mg/kg of THC, and 2.4-fold higher after oral administration of 33 µg/kg of digoxin. As a consequence, the oral bioavailability of THC and digoxin was higher in naturally P-gp-deficient mice. We concluded that P-gp limits THC oral uptake and mediates direct drug excretion from the systemic circulation into the intestinal lumen. [source]


Glucose sensing in the intestinal epithelium

FEBS JOURNAL, Issue 16 2003
Jane Dyer
Dietary sugars regulate expression of the intestinal Na+/glucose cotransporter, SGLT1, in many species. Using sheep intestine as a model, we showed that lumenal monosaccharides, both metabolisable and nonmetabolisable, regulate SGLT1 expression. This regulation occurs not only at the level of transcription, but also at the post-transcriptional level. Introduction of d -glucose and some d -glucose analogues into ruminant sheep intestine resulted in >,50-fold enhancement of SGLT1 expression. We aimed to determine if transport of sugar into the enterocytes is required for SGLT1 induction, and delineate the signal-transduction pathways involved. A membrane impermeable d -glucose analogue, di(glucos-6-yl)poly(ethylene glycol) 600, was synthesized and infused into the intestines of ruminant sheep. SGLT1 expression was determined using transport studies, Northern and Western blotting, and immunohistochemistry. An intestinal cell line, STC-1, was used to investigate the signalling pathways. Intestinal infusion with di(glucos-6-yl)poly(ethylene glycol) 600 led to induction of functional SGLT1, but the compound did not inhibit Na+/glucose transport into intestinal brush-border membrane vesicles. Studies using cells showed that increased medium glucose up-regulated SGLT1 abundance and SGLT1 promoter activity, and increased intracellular cAMP levels. Glucose-induced activation of the SGLT1 promoter was mimicked by the protein kinase A (PKA) agonist, 8Br-cAMP, and was inhibited by H-89, a PKA inhibitor. Pertussis toxin, a G-protein (Gi)-specific inhibitor, enhanced SGLT1 protein abundance to levels observed in response to glucose or 8Br-cAMP. We conclude that lumenal glucose is sensed by a glucose sensor, distinct from SGLT1, residing on the external face of the lumenal membrane. The glucose sensor initiates a signalling pathway, involving a G-protein-coupled receptor linked to a cAMP,PKA pathway resulting in enhancement of SGLT1 expression. [source]


Neutrophil influx during non-typhoidal salmonellosis: who is in the driver's seat?

FEMS IMMUNOLOGY & MEDICAL MICROBIOLOGY, Issue 3 2006
Çagla Tükel
Abstract A massive neutrophil influx in the intestine is the histopathological hallmark of Salmonella enterica serovar Typhimurium-induced enterocolitis in humans. Two major hypotheses on the mechanism leading to neutrophil infiltration in the intestinal mucosa have emerged. One hypothesis suggests that S. enterica serovar Typhimurium takes an active role in triggering this host response by injecting proteins, termed effectors, into the host cell cytosol which induce a proinflammatory gene expression profile in the intestinal epithelium. The second hypothesis suggests a more passive role for the pathogen by proposing that bacterial invasion stimulates the innate pathways of inflammation because the pathogen-associated molecular patterns of S. enterica serovar Typhimurium are recognized by pathogen recognition receptors on cells in the lamina propria. A review of the current literature reveals that, while pathogen recognition receptors are clearly involved in eliciting neutrophil influx during S. enterica serovar Typhimurium infection, a direct contribution of effectors in triggering proinflammatory host cell responses cannot currently be ruled out. [source]


SAP-1 is a microvillus-specific protein tyrosine phosphatase that modulates intestinal tumorigenesis

GENES TO CELLS, Issue 3 2009
Hisanobu Sadakata
SAP-1 (PTPRH) is a receptor-type protein tyrosine phosphatase (RPTP) with a single catalytic domain in its cytoplasmic region and fibronectin type III-like domains in its extracellular region. The cellular localization and biological functions of this RPTP have remained unknown, however. We now show that mouse SAP-1 mRNA is largely restricted to the gastrointestinal tract and that SAP-1 protein localizes to the microvilli of the brush border in gastrointestinal epithelial cells. The expression of SAP-1 in mouse intestine is minimal during embryonic development but increases markedly after birth. SAP-1-deficient mice manifested no marked changes in morphology of the intestinal epithelium. In contrast, SAP-1 ablation inhibited tumorigenesis in mice with a heterozygous mutation of the adenomatous polyposis coli gene. These results thus suggest that SAP-1 is a microvillus-specific RPTP that regulates intestinal tumorigenesis. [source]


Nox1 is over-expressed in human colon cancers and correlates with activating mutations in K-Ras

INTERNATIONAL JOURNAL OF CANCER, Issue 1 2008
Eunice Laurent
Abstract The NADPH-oxidase 1 (Nox1) is a homolog of gp91phox, the catalytic subunit of the phagocyte superoxide-generating NADPH-oxidase. Nox1 is expressed in normal colon epithelial cells and in colon tumor cell lines, and overexpression in model cells has been implicated in stimulation of mitogenesis and angiogenesis and inhibition of apoptosis. This suggests that aberrant expression of Nox1 could contribute to the development of colorectal cancer. Herein, we examine the expression of Nox1 mRNA in 24 colon tumors of various stages compared with paired adjacent normal tissue from the same patient, and correlate expression with some common mutations associated with colon cancer. Nox1 was overexpressed compared with paired normal tissue in 57% of tumors as early as the adenoma stage, with no correlation of expression level with tumor stage. Overexpression of Nox1 mRNA correlated with Nox1 protein levels assessed by immunofluorescence and immunohistochemistry with an antibody specific for Nox1. There was a strong correlation between Nox1 mRNA level and activating mutations in codons 12 and 13 of K-Ras. Eighty percent (8/10) of tumors with codons 12 and 13 mutations had a 2-fold or more increase in Nox1 mRNA, and 70% (7/10) had a 5-fold or greater increase. Transgenic mice expressing K-RasG12V in the intestinal epithelium also expressed markedly elevated Nox1 in both small and large intestine. There was no correlation between inactivating mutations in the tumor suppressor p53 and Nox1 expression. We conclude that Nox1 mRNA and protein are overexpressed in colon cancer and are strongly correlated with activating mutations in K-Ras. © 2008 Wiley-Liss, Inc. [source]


Intralobular ducts of human major salivary glands contain leptin and its receptor

JOURNAL OF ANATOMY, Issue 5 2002
R. De Matteis
Abstract Leptin, a 16-kDa hormone, plays an important role in the control of food intake and in energy homeostasis both in rodents and in man. Leptin is mainly produced and secreted by adipocytes, but other tissues and gastric glands have also recently been shown to produce it in a dual (endocrine and exocrine) mode. In addition, a leptin receptor has been detected in taste cells of mouse circumvallate papillae and in rat intestinal epithelium. These data prompted us to carry out a detailed study of human salivary glands as potential leptin-producing organs. Biopsies of salivary glands (submandibular and parotid) obtained from male and female patients during surgery for different clinical indications were subjected to immunohistochemical study for the presence of leptin, its functional receptor, insulin and glucagon. The presence and cellular distribution of glucocorticoid receptor in leptin-secreting cells were also investigated. Double immunohistochemical staining (silver,gold intensification and avidin,biotin,peroxidase) was used for the visualization of glucocorticoid receptor and leptin labelling, respectively. The results show that intralobular duct cells of submandibular and parotid glands are immunoreactive for leptin, leptin receptor and glucagon but not for insulin. Leptin was also detected in some microglobules in whole saliva obtained from four healthy volunteers. Co-localization for leptin, leptin receptor and glucocorticoid receptor in the same cell type suggested a functional relationship between glucocorticoid hormone and leptin secretion also at the level of the salivary glands. [source]


Iron-induced oxidative stress up-regulates calreticulin levels in intestinal epithelial (Caco-2) cells

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 4 2001
Marco T. Núñez
Abstract Calreticulin, a molecular chaperone involved in the folding of endoplasmic reticulum synthesized proteins, is also a shock protein induced by heat, food deprivation, and chemical stress. Mobilferrin, a cytosolic isoform of calreticulin, has been proposed to be an iron carrier for iron recently incoming into intestinal cells. To test the hypothesis that iron could affect calreticulin expression, we investigated the possible associations of calreticulin with iron metabolism. To that end, using Caco-2 cells as a model of intestinal epithelium, the mass and mRNA levels of calreticulin were evaluated as a function of the iron concentration in the culture media. Increasing the iron content in the culture from 1 to 20 ,M produced an increase in calreticulin mRNA and a two-fold increase in calreticulin. Increasing iron also induced oxidative damage to proteins, as assessed by the formation of 4-hydroxy-2-nonenal adducts. Co-culture of cells with the antioxidants quercetin, dimethyltiourea and N-acetyl cysteine abolished both the iron-induced oxidative damage and the iron-induced increase in calreticulin. We postulate that the iron-induced expression of calreticulin is part of the cellular response to oxidative stress generated by iron. J. Cell. Biochem. 82: 660,665, 2001. © 2001 Wiley-Liss, Inc. [source]


Cadmium-induced hormetic effect in differentiated Caco-2 cells: ERK and p38 activation without cell proliferation stimulation

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2010
Marc Mantha
Cadmium (Cd) is a toxic metal that enters the food chain. Following oral ingestion, the intestinal epithelium may in part protect against Cd toxicity but is also a target tissue. Using human enterocytic-like Caco-2 cells, we have previously shown differences in sensitivity to Cd according to the differentiation status. The present study focuses on Cd effects on differentiated cells. Concentration and time-dependent increases in MTT (3-[4,5-dimethyl-2-thiazol-2-yl]-2,5-diphenyltetrazolium bromide assay) activity were observed in post-confluent cultures exclusively, with a twofold maximal stimulation in 21-day-old cells exposed to 10,µM Cd for 24,h. No concomitant increase in [methyl- 3H] thymidine incorporation was noted and Cd did not modify cell distribution in the cell-cycle phases. However, Cd-induced increase in MTT activity was inhibited by cycloheximine as well as by inhibitors of ERK1/2 and p38, but not by that of JNK. Consistently, Cd increased the levels of ERK1/2 and p38 phosphorylation. Inhibition of Ras-GTP or PI3K enhanced the stimulatory effect of Cd, whereas mTOR inhibition had no effect. Inhibition of G protein-phospholipase and PKC decreased MTT stimulation. These results show a hormesis-like stimulation of Cd on MTT activity in differentiated intestinal cells exclusively. This effect is not related to cell proliferation but more likely to increased protein synthesis which involves ERK1/2 and p38 cascades and possibly PLC-, signaling pathways. Because growth-related differentiation of intestinal cells is linked to the selective and sequential activation of MAPKs, the impacts that these Cd-induced perturbations in signaling pathways may have on intestinal functions clearly deserve to be investigated. J. Cell. Physiol. 224:250,261, 2010 © 2010 Wiley-Liss, Inc. [source]


Microbial induction of CARD15 expression in intestinal epithelial cells via toll-like receptor 5 triggers an antibacterial response loop,

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2006
B. Begue
With the discovery of CARD15 as susceptibility gene for Crohn's disease (CD) a first link to a potential defect in the innate immune system was made. In this work we aimed to analyze enterocyte NOD2/CARD15 expression and regulation in response to bacterial motifs and the consequences of the most common CD-specific CARD15 mutation on antibacterial responses of normal intestinal epithelial cells (IEC). Under normal conditions, IEC lines and ileal enterocytes did not express NOD2/CARD15 mRNA or protein, contrary to IEC derived from inflammatory CD sections. In vitro analyses revealed that the simple contact with non-pathogenic commensal E. Coli K12 was sufficient to induced NOD2/CARD15 mRNA and protein in human IEC (HIEC). We identified bacterial flagellin interacting with TLR5 as major motif in this regulation of NOD2/CARD15. E. Coli mutants not expressing flagellin (,FliC) failed to induce CARD15. Similarly, in HIEC transfected with a plasmid encoding dominant negative TLR5, no CARD15 induction was observed after K12 contact. Isolated TLR2 or TLR4 stimulation had no or only a marginal effect on NOD2/CARD15 expression. NOD2/CARD15 negative HIEC were unresponsive to muramyl dipeptide (MDP), but once NOD2/CARD15 was induced, HIEC and Caco2 cells responded to intra or extracellular MDP presentation with the activation of the NFkB pathway. IEC transfected with the Crohn-specific CARD15 mutant (F3020insC, FS) failed to activate NFkB after MDP-challenge, in contrast to CARD15WT IEC. In response to MDP, IEC induced a massive antibacterial peptide (ABP) response, seen in the apical release of CCL20. This was completely abolished in IEC carrying CARD15FS. These data suggest a critical role of NOD2/CARD15 in the bacterial clearance of the intestinal epithelium while CD-specific mutated NOD2/CARD15 causes an impaired epithelial barrier. J. Cell. Physiol. 209: 241,252, 2006. © 2006 Wiley-Liss, Inc. [source]


The ontogeny of the alimentary tract of larval pandora, Pagellus erythrinus L.

JOURNAL OF FISH BIOLOGY, Issue 2004
V. Micale
The ontogenesis of the alimentary tract and its associated structures (liver, pancreas, gall bladder) was studied in common pandora Pagellus eythrinus L., a promising species for diversification in Mediterranean aquaculture. Mass production of pandora has been limited so far by high larval and juvenile mortalities, which appear to be related to nutritional deficiencies. The development of the larval digestive system was studied histologically from hatching (0 DAH) until day 50 (50 DAH) in reared specimens, obtained by natural spawning from a broodstock adapted to captivity. At first feeding (3,4 DAH) both the mouth and anus had opened and the digestive tract was differentiated in four portions: buccopharynx, oesophagus, incipient stomach and intestine. The pancreas, liver and gall bladder were also differentiated at this stage. Soon after the commencement of exogenous feeding (5,6 DAH), the anterior intestinal epithelium showed large vacuoles indicating the capacity for absorption of lipids, whereas acidophilic supranuclear inclusions indicating protein absorption were observed in the posterior intestinal epithelium. Both the bile and main pancreatic ducts had opened in the anterior intestine, just after the pyloric sphincter, at this stage. Intestinal coiling was apparent since 4 DAH, while mucosal folding began at 10 DAH. Scattered mucous cells occurred in the oral cavity and the intestine, while they were largely diffused in the oesophagus. Gastric glands and pyloric caeca were firstly observed at 28 DAH and appeared well developed by 41 DAH, indicating the transition from larval to juvenile stage and the acquisition of an adult mode of digestion. [source]


Soybean meal alters autochthonous microbial populations, microvilli morphology and compromises intestinal enterocyte integrity of rainbow trout, Oncorhynchus mykiss (Walbaum)

JOURNAL OF FISH DISEASES, Issue 9 2009
D L Merrifield
Abstract Rainbow trout were fed either a diet containing fishmeal (FM) as the crude protein source or a diet containing 50% replacement with soybean meal (SBM) for 16 weeks. An enteritis-like effect was observed in the SBM group; villi, enterocytes and microvilli were noticeably damaged compared with the FM group. The posterior intestine microvilli of SBM-fed fish were significantly shorter and the anterior intestine microvilli significantly less dense than the FM-fed fish. Electron microscopy confirmed the presence of autochthonous bacterial populations associated with microvilli of both fish groups. Reduced density of microvilli consequently led to increased exposure of enterocyte tight junctions, which combined with necrotic enterocytes is likely to diminish the protective barrier of the intestinal epithelium. No significant differences in total viable counts of culturable microbial populations were found between the groups in any of the intestinal regions. A total of 1500 isolates were tentatively placed into groups or genera, according to standard methods. Subsequent partial 16S rRNA sequencing revealed species that have not been identified from the rainbow trout intestine previously. Compared with the FM group levels of Psychrobacter spp. and yeast were considerably higher in the SBM group; a reduction of Aeromonas spp. was also observed. [source]


Translocation of viable Aeromonas salmonicida across the intestine of rainbow trout, Oncorhynchus mykiss (Walbaum)

JOURNAL OF FISH DISEASES, Issue 5 2006
F Jutfelt
Abstract The pathogenic bacterium Aeromonas salmonicida is the causative agent of the destructive disease furunculosis in salmonids. Horizontal transmission in salmonids has been suggested to occur via the skin, gills and/or intestine. Previous reports are contradictory regarding the role of the intestine as a route of infection. The present study therefore investigates the possibility of bacterial translocation across intestinal epithelia using Ussing chamber technology, in vitro. Intestinal segments were exposed for 90 min to fluorescein isothiocyanate-labelled pathogenic A. salmonicida. Sampling from the serosal side of the Ussing chambers showed that bacteria were able to translocate across the intestinal epithelium in both the proximal and distal regions. Plating and subsequent colony counting showed that the bacteria were viable after translocation. During the 90 min exposure to A. salmonicida, the intestinal segments maintained high viability as measured by electrical parameters. The distal region responded to bacterial exposure by increasing the electrical resistance, indicating an increased mucus secretion. This study thus demonstrates translocation of live A. salmonicida through the intestinal epithelium of rainbow trout, suggesting that the intestine is a possible route of infection in salmonids. [source]


Safety and Functional Aspects of Preselected Enterococci for Probiotic Use in Iberian Dry-Fermented Sausages

JOURNAL OF FOOD SCIENCE, Issue 7 2009
Santiago Ruiz-Moyano
ABSTRACT:, The purpose of this study was to investigate enterococci for potential probiotic use in Iberian dry-fermented sausages. A total of 15 strains isolated from Iberian dry-fermented sausages, human feces, and pig feces were evaluated for their safety and functional characteristics including biogenic amine (BA) production, antibiotic susceptibility, hemolysis, virulence determinants, cell adhesion, and antimicrobial activity against foodborne pathogens. The strain,Enterococcus faecium,SE906 was able to establish itself on the intestinal epithelium, inhibiting such pathogenic bacteria as,Listeria monocytogenes in vitro. This strain was also considered safe to be used for its low aminogenic potential, and its antibiotic resistance pattern and virulence determinants, being identified as a potential probiotic meat starter culture suitable for manufacture of dry-fermented Iberian sausages. [source]


An improved method for preparing thick sections for immuno/histochemistry and confocal microscopy and its use to identify rare events

JOURNAL OF MICROSCOPY, Issue 2 2001
P. Monaghan
Detection of rare events within solid tissues by immunocytochemistry is aided by imaging thick sections. Sections of 40,100 µm thickness of paraformaldehyde-fixed solid tissue can be prepared by use of a vibrating microtome and when immunolabelled these sections can be imaged in a confocal microscope. This approach provides excellent preservation of the structure of the sample and imposes minimal antigenic damage. In studies of the invasion of the bovine intestinal epithelium by Salmonella, this method has allowed detection of individual invading bacteria within large samples. The thick vibrating microtome sections were also used for the detection of rare apoptotic cell nuclei identified by TUNEL staining. [source]


Simulation modelling of human intestinal absorption using Caco-2 permeability and kinetic solubility data for early drug discovery

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 10 2008
Simon Thomas
Abstract Measurement of permeation across a monolayer of the human adenocarcinoma cell line, Caco-2, is a popular surrogate for a compound's permeation across the human intestinal epithelium. Taken alone, however, Caco-2 permeability has certain limitations in the prediction of the extent of absorption of an orally-administered compound, because it does not take into account confounding factors such as solubility and dissolution in the gastrointestinal (GI) tract fluids. A simulation model is described that uses Caco-2 permeability measured in the apical to basolateral direction plus kinetic solubility in buffered solution (both measured at pH 7.4) to predict human intestinal absorption. The model features novel treatment of time-varying fluid volume in the GI tract, as a consequence of secretions into, and absorption of fluid from, the upper part of the GI tract. The model has been trained and cross-validated with data for 120 combinations of compound and dose. It has superior predictive power to recently published simulation and quantitative structure property relationship models, and is suitable for high-throughput screening during lead identification and lead optimisation in drug discovery. © 2008 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 97:4557,4574, 2008 [source]


Transport of levovirin prodrugs in the human intestinal Caco-2 cell line

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 6 2006
Fujun Li
Abstract The transport of 10 amino acid ester prodrugs of levovirin (LVV) was investigated in the human intestinal Caco-2 cell line in order to overcome the poor oral bioavailability of LVV, an investigational drug for the treatment of hepatitis C infection. The prodrugs were designed to improve the permeability of LVV across the intestinal epithelium by targeting the di/tri-peptide carrier, PepT1. Caco-2 cell monolayers were employed to study the transport and hydrolysis properties of the prodrugs. Among all mono amino acid ester prodrugs studied, the LVV-5,-(L)-valine prodrug (R1518) exhibited the maximum increase (48-fold) in permeability with nearly complete conversion to LVV within 1 h. Di-amino acid esters did not offer significant enhancement in permeability comparing with mono amino acid esters and exhibited slower conversion to LVV in Caco2 cell monolayers. Pharmacokinetic screening studies of the prodrugs in rats yielded the highest fold increase (6.9-fold) of AUC with R1518 and in general displayed a similar trend to that observed in increases of permeability in Caco-2 cells. Mechanisms involved in the Caco-2 cell transport of R1518 were also investigated. Results of bi-directional transport studies support the involvement of carrier-mediated transport mechanisms for R1518, but not for the LVV-5,-(D)-valine prodrug or LVV. Moreover, the permeability of R1518 was found to be proton dependent. PepT1-mediated transport of R1518 was supported by results of competitive transport studies of R1518 with the PepT1 substrates enalapril, Gly-Sar, valganciclovir, and cephalexin. R1518 was also found to inhibit the permeability of valganciclovir and cephalexin. These results suggest that R1518 is a PepT1 substrate as well as an inhibitor. © 2006 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 95:1318,1325, 2006 [source]


Mechanisms of cytoprotective effect of amino acids on local toxicity caused by sodium laurate, a drug absorption enhancer, in intestinal epithelium

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 3 2002
Yoko Endo
Abstract Several amino acids, including L -glutamine (L -Gln), were found to protect the intestinal epithelial cells from the local toxicity caused by a drug absorption enhancer, sodium laurate (C12), in our previous study. To develop more efficient and safer formulations for enhancing drug absorption, the mechanisms of cytoprotection by amino acids were studied using rats and Caco-2 cells. Four amino acids, including L -Gln, could generally maintain the absorption-promoting action of C12, although taurine tended to attenuate it. Three amino acids, except for L -Gln, significantly suppressed the decrease in the transepithelial electrical resistance caused by C12. Quercetin, an inhibitor for biosynthesis of heat shock protein 70 (HSP70), masked only the protective effect of L -Gln in both rat large intestine and Caco-2 cells. Western blot analysis indicated clearly that HSP70 is induced extensively only by the addition of L -Gln in both rat large-intestinal cells and Caco-2 cells. C12 was found to increase the intracellular concentration of Ca2+ ([Ca2+]i) remarkably, and amino acids, especially L -arginine, L -methionine, and taurine, significantly attenuated the increase in [Ca2+]i caused by C12. Furthermore, although C12 stimulated the release of histamine, an inflammatory mediator, from rat large-intestinal tissue, amino acids were also found to suppress the release of histamine enhanced by C12. The results in the present study showed that an induction of HSP70, a decrease in [Ca2+]i elevated by C12, and a suppression of histamine release stimulated by C12 should be involved in the mechanisms behind the cytoprotective action of amino acids against the local toxicity caused by C12. © 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 91:730,743, 2002 [source]


Ileal Uptake of Polyalkylcyanoacrylate Nanocapsules in the Rat

JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 9 2000
CHRISTIANE DAMGÉ
The ileal uptake of polyalkylcyanoacrylate nanocapsules (less than 300 nm in diameter) has been investigated in the rat. Iodised oil (Lipiodol) was used as the tracer for X-ray microprobe analysis in scanning electron microscopy. Lipiodol nanocapsules, or an emulsion of Lipiodol, were administered in the lumen of an isolated ileal loop of rat. Lipiodol nanocapsules improved the absorption of the tracer as indicated by increased concentrations of iodine in the mesenteric blood (+27%, P < 0.01, compared with Lipiodol emulsion). Intestinal biopsies were taken at different time points and the samples underwent cryofixation and freeze-drying. The nanocapsules were characterized by their strong iodine emission, and electron microscopy of the biopsy samples revealed nanocapsules in the intraluminal mucus of the non-follicular epithelium, then in the intercellular spaces between enterocytes, and finally the nanocapsules were found within intravillus capillaries. However, nanocapsules were most abundant in the Peyer's patches, where the intestinal epithelium had been crossed by way of the specialized epithelial cells, designated membranous cells, or M cells, and their adjacent absorptive cells. These observations were confirmed quantitatively by measuring iodine concentrations in the various tissue compartments. Ten minutes after the intraluminal administration of Lipiodol nanocapsules, the emission of iodine peaked in the mucus (+77%, P < 0.01), in M cells (+366%, P < 0.001), in enterocytes adjacent to M cells (+70%, P < 0.05) and in lymph vessels (+59%, P < 0.05). Polyalkylcyanoacrylate nanocapsules were able to pass through the ileal mucosa of the rat via a paracellular pathway in the non-follicular epithelium, and most predominantly, via M cells and adjacent enterocytes in Peyer's patches. [source]


Targeting murine small bowel and colon through selective superior mesenteric artery injection

MICROSURGERY, Issue 6 2010
Stacy L. Porvasnik M.S.
Administration of molecular, pharmacologic, or cellular constructs to the intestinal epithelium is limited by luminal surface mucosal barriers and ineffective intestinal delivery via systemic injection. Many murine models of intestinal disease are used in laboratory investigation today and would benefit specific modulation of the intestinal epithelium. Our aim was to determine the feasibility of a modified microsurgical approach to inject the superior mesenteric artery (SMA) and access the intestinal epithelium. We report the detailed techniques for selective injection of the SMA in a mouse. Mice were injected with methylene blue dye to grossly assess vascular distribution, fluorescent microspheres to assess biodistribution and viral vector to determine biological applicability. The procedure yielded good recovery with minimal morbidity. Tissue analysis revealed good uptake in the small intestine and colon. Biodistribution analysis demonstrated some escape from the intestine with accumulation mainly in the liver. This microsurgical procedure provides an effective and efficient method for delivery of agents to the small intestine and colon, including biological agents. © 2010 Wiley-Liss, Inc. Microsurgery 30:487,493, 2010. [source]


Enterohaemorrhagic and enteropathogenic Escherichia coli use a different Tir-based mechanism for pedestal formation

MOLECULAR MICROBIOLOGY, Issue 6 2001
Rebekah DeVinney
Enterohaemorrhagic Escherichia coli (EHEC) adheres to the host intestinal epithelium, resulting in the formation of actin pedestals beneath adhering bacteria. EHEC and a related pathogen, enteropathogenic E. coli (EPEC), insert a bacterial receptor, Tir, into the host plasma membrane, which is required for pedestal formation. An important difference between EPEC and EHEC Tir is that EPEC but not EHEC Tir is tyrosine phosphorylated once delivered into the host. In this study, we assessed the role of Tir tyrosine phosphorylation in pedestal formation by EPEC and EHEC. In EPEC, pedestal formation is absolutely dependent on Tir tyrosine phosphorylation and is not complemented by EHEC Tir. The protein sequence surrounding EPEC Tir tyrosine 474 is critical for Tir tyrosine phosphorylation and pedestal formation by EPEC. In contrast, Tir tyrosine phosphorylation is not required for pedestal formation by EHEC. EHEC forms pedestals with both wild-type EPEC Tir and the non-tyrosine-phosphorylatable EPEC Tir Y474F. Pedestal formation by EHEC requires the type III delivery of additional EHEC factors into the host cell. These findings highlight differences in the mechanisms of pedestal formation by these closely related pathogens and indicate that EPEC and EHEC modulate different signalling pathways to affect the host actin cytoskeleton. [source]


Chemokine and cytokine expression in murine intestinal epithelium following Nippostrongylus brasiliensis infection

PARASITE IMMUNOLOGY, Issue 2 2002
Anne Rosbottom
Summary Infection of mice with the nematode parasite Nippostrongylus brasiliensis results in a well characterized intestinal mastocytosis with intraepithelial migration of mucosal mast cells (MMC). The molecules mediating this response are unknown. We examined expression of several putative mast cell chemoattractants in intestinal epithelium following N. brasiliensis infection. Expression of the chemokines monocyte chemoattractant protein-1 (MCP-1), macrophage inflammatory protein-1,(MIP-1,), RANTES (regulated on activation normal T-cell expressed and secreted), fractalkine, and thymocyte expressed chemokine (TECK); and the cytokines stem cell factor (SCF) and transforming growth factor ,1 (TGF,1), was constitutive and no alteration was detected following infection. MCP-1 expression was also constitutive but at much lower levels and increased expression was detected on days 7 and 14 postinfection. Expression of MCP-1 in whole jejunum was at much higher levels than in epithelium. Constitutive expression of MCP-1, MIP-1, and TGF,1 was also detected in cultured bone marrow-derived homologues of MMC. In an intestinal epithelial cell line (CMT-93), there was constitutive expression of SCF, TGF,1, fractalkine and MCP-1. The results show that, in vivo, epithelium is a potentially important source of mast cell chemoattractants. [source]


Taurine uptake across the human intestinal brush-border membrane is via two transporters: H+ -coupled PAT1 (SLC36A1) and Na+ - and Cl, -dependent TauT (SLC6A6)

THE JOURNAL OF PHYSIOLOGY, Issue 4 2009
Catriona M. H. Anderson
Taurine is an essential amino acid in some mammals and is conditionally essential in humans. Taurine is an abundant component of meat and fish-based foods and has been used as an oral supplement in the treatment of disorders such as cystic fibrosis and hypertension. The purpose of this investigation was to identity the relative contributions of the solute transporters involved in taurine uptake across the luminal membrane of human enterocytes. Distinct transport characteristics were revealed following expression of the candidate solute transporters in Xenopus laevis oocytes: PAT1 (SLC36A1) is a H+ -coupled, pH-dependent, Na+ - and Cl, -independent, low-affinity, high-capacity transporter for taurine and ,-alanine; TauT (SLC6A6) is a Na+ - and Cl, -dependent, high-affinity, low-capacity transporter of taurine and ,-alanine; ATB0,+ (SLC6A14) is a Na+ - and Cl, -dependent, high-affinity, low-capacity transporter which accepts ,-alanine but not taurine. Taurine uptake across the brush-border membrane of human intestinal Caco-2 cell monolayers showed characteristics of both PAT1- and TauT-mediated transport. Under physiological conditions, Cl, -dependent TauT-mediated uptake predominates at low taurine concentrations, whereas at higher concentrations typical of diet, Cl, -independent PAT1-mediated uptake is the major absorptive mechanism. Real-time PCR analysis of human duodenal and ileal biopsy samples demonstrates that PAT1, TauT and ATB0,+ mRNA are expressed in each tissue but to varying degrees. In conclusion, this study is the first to demonstrate both taurine uptake via PAT1 and functional coexpression of PAT1 and TauT at the apical membrane of the human intestinal epithelium. PAT1 may be responsible for bulk taurine uptake during a meal whereas TauT may be important for taurine supply to the intestinal epithelium and for taurine capture between meals. [source]


An Anti-CD103 Immunotoxin Promotes Long-Term Survival of Pancreatic Islet Allografts

AMERICAN JOURNAL OF TRANSPLANTATION, Issue 9 2009
L. Zhang
Previous studies using knockout mice document a key role for the integrin CD103 in promoting organ allograft rejection and graft-versus-host disease. However, a determination of whether blockade of the CD103 pathway represents a viable therapeutic strategy for intervention in these processes has proven problematic due to the lack of reagents that efficiently deplete CD103+ cells from wild type hosts. To circumvent this problem, we conjugated the nondepleting anti-CD103 monoclonal antibody, M290, to the toxin, saporin, to produce an immunotoxin (M290-SAP) that efficiently depletes CD103+ cells in vivo. Herein, we show that M290-SAP dramatically reduces the frequency and absolute numbers of CD103-expressing leukocytes in the blood, spleen, mesenteric lymph nodes and intestinal epithelium of treated mice. We further demonstrate that M290-SAP promotes indefinite islet allograft survival in a fully MHC mismatched mouse model. The prolonged islet allograft survival resulting from M290-SAP treatment was associated with multiple effects in the host immune system including not only depletion of CD103-expressing leukocytes, but also an increase in CD4+CD25+FoxP3+ T regulatory cells and a predominance of effector-memory CD8 T cells. Regardless of the underlying mechanisms, these data document that depletion of CD103-expressing cells represents a viable strategy for therapeutic intervention in allograft rejection. [source]


Cloning, overexpression, purification, crystallization and preliminary X-ray analysis of CheY3, a response regulator that directly interacts with the flagellar `switch complex' in Vibrio cholerae

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 8 2010
Susmita Khamrui
Vibrio cholerae is the aetiological agent of the severe diarrhoeal disease cholera. This highly motile organism uses the processes of motility and chemotaxis to travel and colonize the intestinal epithelium. Chemotaxis in V. cholerae is far more complex than that in Escherichia coli or Salmonella typhimurium, with multiple paralogues of various chemotaxis genes. In contrast to the single copy of the chemotaxis response-regulator protein CheY in E. coli, V. cholerae contains four CheYs (CheY1,CheY4), of which CheY3 is primarily responsible for interacting with the flagellar motor protein FliM, which is one of the major constituents of the `switch complex' in the flagellar motor. This interaction is the key step that controls flagellar rotation in response to environmental stimuli. CheY3 has been cloned, overexpressed and purified by Ni,NTA affinity chromatography followed by gel filtration. Crystals of CheY3 were grown in space group R3, with a calculated Matthews coefficient of 2.33,Å3,Da,1 (47% solvent content) assuming the presence of one molecule per asymmetric unit. [source]