Intense Staining (intense + staining)

Distribution by Scientific Domains


Selected Abstracts


Changes in the expression of plasma membrane calcium extrusion systems during the maturation of hippocampal neurons

HIPPOCAMPUS, Issue 1 2006
Sertac N. Kip
Abstract Spatial and temporal control of intracellular calcium signaling is essential for neuronal development and function. The termination of local Ca2+ signaling and the maintenance of basal Ca2+ levels require specific extrusion systems in the plasma membrane. In rat hippocampal neurons (HNs) developing in vitro, transcripts for all isoforms of the plasma membrane Ca2+ pump and the Na/Ca2+ exchanger, and the major nonphotoreceptor Na+/Ca2+,K+ exchangers (NCKX) were strongly upregulated during the second week in culture. Upregulation of plasma membrane calcium ATPases (PMCAs)1, 3, and 4 mRNA coincided with a splice shift from the ubiquitous b-type to the neuron-specific a-type with altered calmodulin regulation. Expression of all PMCA isoforms increased over 5-fold during the first 2 weeks. PMCA immunoreactivity was initially concentrated in the soma and growth cones of developing HNs. As the cells matured, PMCAs concentrated in the dendritic membrane and often colocalized with actin-rich dendritic spines in mature neurons. In the developing rat hippocampal CA1 region, immunohistochemistry confirmed the upregulation of all PMCAs and showed that by the end of the second postnatal week, PMCAs1, 2, and 3 were concentrated in the neuropil, with less intense staining of cell bodies in the pyramidal layer. PMCA4 staining was restricted to a few cells showing intense labeling of the cell periphery and neurites. These results establish that all major Ca2+ extrusion systems are strongly upregulated in HNs during the first 2 weeks of postnatal development. The overall increase in Ca2+ extrusion systems is accompanied by changes in the expression and cellular localization of different isoforms of the Ca2+ pumps and exchangers. The accumulation of PMCAs in dendrites and dendritic spines coincides with the functional maturation in these neurons, suggesting the importance of the proper spatial organization of Ca2+ extrusion systems for synaptic function and development. © 2005 Wiley-Liss, Inc. [source]


Expression of brush border enzymes in response to lead exposure in rat intestine

JOURNAL OF APPLIED TOXICOLOGY, Issue 5 2005
Priya Kapur
Abstract The effect of feeding lead (50 mg kg,1 body weight) daily for 7 days on the development of various brush border enzymes in the intestine has been studied. The activities of brush border sucrase (P < 0.001), lactase (P < 0.001), , -glutamyl transpeptidase (P < 0.05) and leucine aminopeptidase were reduced (P < 0.05), whereas the alkaline phosphatase level was augmented (P < 0.05) in lead fed rats compared with controls. Kinetic studies with sucrase revealed a low Vmax (0.224 in control and 0.160 units mg,1 protein in lead exposed) with no change in Km (12.6,13.5 mm). Western blot analysis for alkaline phosphatase yielded intense staining of enzyme protein in lead fed rats compared with controls, however, the intensity of the antigen signal was reversed for sucrase under these conditions. These findings suggest that ingestion of lead may interfere with the crypt cell differentiation process thus affecting enzyme functions in the rat intestine. Copyright © 2005 John Wiley & Sons, Ltd. [source]


TNF-, expression and apoptosis-regulating proteins in oral lichen planus: a comparative immunohistochemical evaluation

JOURNAL OF ORAL PATHOLOGY & MEDICINE, Issue 8 2000
Alexandra Sklavounou
Abstract: Apoptosis appears to be the mode of cell death by which damaged cells are removed from the lesional tissue in oral lichen planus (OLP). In the present study, OLP biopsies were immunohistochemically evaluated for TNF-, and apoptosis-regulating proteins in an attempt to compare their phenotypic expression. Deparaffinized tissue sections from 22 OLP and 10 control oral biopsy specimens were immunohistochemically stained with anti-Bcl-2, anti-Bcl-x, anti-Bax and anti-TNF-, antibodies. Keratinocytes did not show any immunoreactivity for Bcl-2, while a uniform intense staining for this protein was evident in the lymphocytic infiltrate of OLP specimens. Immunoreactivity for TNF-, was seen in 17/22 OLP cases. All control tissues were TNF-, negative, thus indicating a possible involvement of this cytokine in the pathogenesis of OLP. The differences in the staining intensities of Bcl-x and Bax between OLP and normal epithelium were slight; therefore an obvious association of the phenotypic TNF-, expression with these apoptosis-regulating proteins was not apparent. [source]


Stage-specific Alterations of Cyclin Expression During UVB-induced Murine Skin Tumor Development,

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 1 2002
Arianna L. Kim
ABSTRACT We have evaluated the in vivo correlation between the expression of cell cycle markers and skin tumor development in SKH-1 hairless mice in a complete photocarcinogenesis protocol. Irradiated mice developed an average of 16 tumors per animal by week 23 with the average number of carcinomas per mouse being 2.1. The expression of p53 and cyclins A and D1 was confined initially to sporadic single cells and gradually developed into foci of patchy intense staining in the basal and granular layers of UVB-exposed epidermis. p53 was expressed in all the papilloma sections examined, whereas cyclins D1 and A were expressed in 68 and 71% of these lesions, respectively. In UVB-induced squamous cell carcinomas (SCC), p53 was expressed in >90% of the tumors, whereas cyclin D1 was detected in 55% of the lesions, and cyclin A staining was limited to 27%. These immunohistochemical observations were confirmed by Western blotting and protein kinase assays. We observed an early wave of cyclin A overexpression and cyclin A protein kinase activity preceding the appearance of detectable tumors. Cyclin D1 and p53 overexpression were coupled with the development of tumors, and these changes are likely to be relevant to the pathogenesis of these lesions. [source]


Localization of putative nitrergic neurons in peripheral chemosensory areas and the central nervous system of Aplysia californica

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 1 2006
Leonid L. Moroz
Abstract The distribution of putative nitric oxide synthase (NOS)-containing cells in the opisthobranch mollusc Aplysia californica was studied by using NADPH-diaphorase (NADPH-d) histochemistry in the CNS and peripheral organs. Chemosensory areas (the mouth area, rhinophores, and tentacles) express the most intense staining, primarily in the form of peripheral highly packed neuropil regions with a glomerular appearance as well as in epithelial sensory-like cells. These epithelial NADPH-d-reactive cells were small and had multiple apical ciliated processes exposed to the environment. NADPH-d processes were also found in the salivary glands, but there was no or very little staining in the buccal mass and foot musculature. In the CNS, most NADPH-d reactivity was associated with the neuropil of the cerebral ganglia, with the highest density of glomeruli-like NADPH-d-reactive neurites in the areas of the termini and around F and C clusters. A few NADPH-d-reactive neurons were also found in other central ganglia, including paired neurons in the buccal, pedal, and pleural ganglia and a few asymmetrical neurons in the abdominal ganglion. The distribution patterns of NADPH-d-reactive neurons did not overlap with other known neurotransmitter systems. The highly selective NADPH-d labeling revealed here suggests the presence of NOS in sensory areas both in the CNS and the peripheral organs of Aplysia and implies a role for NO as a modulator of chemosensory processing. J. Comp. Neurol. 495:10,20, 2006. © 2006 Wiley-Liss, Inc. [source]


Chromogranins as markers of altered hippocampal circuitry in temporal lobe epilepsy

ANNALS OF NEUROLOGY, Issue 2 2001
Susanne Pirker MD
Chromogranins are polypeptides which are widely expressed in the central nervous system. They are stored in dense core vesicles of nerve terminals, from where they are released upon stimulation. Using immunocytochemistry, we investigated the distribution of chromogranin A, chromogranin B, secretoneurin, and, for comparison, dynorphin in hippocampal specimens removed at routine surgery from patients with drug-resistant mesial temporal lobe epilepsy and in autopsy tissues from nonneurologically deceased subjects. In post mortem controls (n = 21), immunoreactivity for all four peptides (most prominently for chromogranin B and dynorphin) was observed in the terminal field of mossy fibers. For chromogranins, staining was observed also in sectors CA1 to CA3 and in the subiculum. Chromogranin B immunoreactivity was found in the inner molecular layer of the dentate gyrus, the area of terminating associational-commissural fibers. Secretoneurin and dynorphin immunoreactivity labeled the outer molecular layer and the stratum lacunosum moleculare of sectors CA1 to CA3, where projections from the entorhinal cortex terminate. In specimens with Ammon's horn sclerosis (n = 25), staining for all three chromogranins and for dynorphin was reduced in the hilus of the dentate gyrus. Instead, intense staining was observed in the inner molecular layer, presumably delineating terminals of sprouted mossy fibers. Specimens obtained from temporal lobe epilepsy patients without Ammon's horn sclerosis (n = 4) lacked this pronounced rearrangement of mossy fibers. In the stratum lacunosum moleculare of sector CA1, secretoneurin and dynorphin immunoreactivity was reduced in sclerotic, but not in nonsclerotic, specimens, paralleling the partial loss of fibers arising from the entorhinal cortex. Instead, presumably sprouted secretoneurin-immunoreactive fibers were found in the outer dentate molecular layer in sclerotic specimens. These changes in staining patterns for chromogranins and dynorphin mark profound plastic and functional rearrangement of hippocampal circuitry in temporal lobe epilepsy. [source]


Biochemical mechanisms of insecticide resistance in the diamondback moth (DBM), Plutella xylostella L. (Lepidopterata: Yponomeutidae), in the Sydney region, Australia

AUSTRALIAN JOURNAL OF ENTOMOLOGY, Issue 4 2009
Vincent Y Eziah
Abstract Following the detection of resistant diamondback moth (DBM) populations to synthetic pyrethroid, organophosphorus and indoxacarb insecticides in the Sydney Basin, a study of the major biochemical mechanisms was conducted to determine the type of resistance in these populations. The activity of cytochrome P450 monooxygenases increased two- to sixfold when compared with the susceptible strain. Up to a 1.9-fold increase in esterase activity in resistant strains compared with the susceptible strain was observed. In vitro inhibition studies showed that profenofos, methamidophos and chlorpyrifos strongly inhibited the esterases while permethrin and esfenvalerate resulted in less than 30% inhibition. Qualitative analysis of the esterases using native polyacrylamide gel electrophoresis showed four bands in both the susceptible and resistant individuals with more intense staining in the resistant individuals. The development of these bands was inhibited by methamidophos and chlorpyrifos pretreatment of the protein extract while permethrin and esfenvalerate did not exhibit this effect. Glutathione S-transferase (GST) activity was significantly higher in two field populations compared with the remaining populations. Overall, the study showed that the mechanisms of insecticide resistance in the DBM populations in the area studied were due to cytochrome P450 monooxygenases, esterase and GSTs, and possibly other non-metabolic mechanisms that were not investigated in the present study. [source]