Integrin Levels (integrin + level)

Distribution by Scientific Domains


Selected Abstracts


Simulated microgravity activates MAPK pathways in fibroblasts cultured on microgrooved surface topography

CYTOSKELETON, Issue 2 2008
W. A. Loesberg
Abstract This study evaluated in vitro the differences in morphological behaviour between fibroblast cultured on smooth and microgrooved substrata (groove depth: 0.5 ,m, width: 1 ,m), which were subjected to simulated microgravity. The aim of the study was to clarify which of these parameters was more dominant to determine cell behaviour. Morphological characteristics were investigated using scanning electron microscopy and fluorescence microscopy in order to obtain qualitative information on cell alignment. Expression of collagen type I, and ,1-, ,1-, ,3-integrin were investigated by QPCR. Finally, immunoblotting was applied to visualise MAPK signalling pathways. Microscopy and image analysis showed that the fibroblasts aligned along the groove direction on all textured surfaces. On the smooth substrata, cells had spread out in a random fashion. The alignment of cells cultured on grooved surfaces under simulated microgravity, after 48 h of culturing appeared similar to those cultured at 1g, although cell shape was different. Analysis of variance proved that all main parameters: topography, gravity force, and time were significant. In addition, gene levels were reduced by simulated microgravity particularly those of ,3-integrin and collagen, however alpha-1 and beta-1 integrin levels were up-regulated. ERK1/2 was reduced in RPM, however, JNK/SAPK and p38 remained active. The members of the small GTPases family were stimulated under microgravity, particularly RhoA and Cdc42. The results are in agreement that application of microgravity to fibroblasts promotes a change in their morphological appearance and their expression of cell-substratum proteins through the MAPK intracellular signalling pathways. Cell Motil. Cytoskeleton 2007. © 2007 Wiley-Liss, Inc. [source]


Developmental abnormalities in the nerves of peripheral myelin protein 22-deficient mice

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 2 2007
Stephanie A. Amici
Abstract Peripheral myelin protein 22 (PMP22) is a tetraspan glycoprotein whose misexpression is associated with a family of hereditary peripheral neuropathies. In a recent report, we have characterized a novel PMP22-deficient mouse model in which the first two coding exons were replaced by the lacZ reporter. To investigate further the myelin abnormalities in the absence of PMP22, sciatic nerves and dorsal root ganglion (DRG) neuron explant cultures from PMP22-deficient mice were studied at various stages of myelination. Throughout the first 3 months of postnatal development, myelin protein and ,4 integrin levels are dramatically reduced, whereas p75 and ,1 integrin remain elevated. By immunostaining, the distributions of several glial proteins, including ,4 integrin, the voltage-gated potassium channel Kv1.1, and E-cadherin, are altered. Schwann cells from PMP22-deficient mice are able to produce limited amounts of myelin in DRG explant cultures, yet the internodal segments are dramatically fewer and shorter. The comparison of PMP22-deficient mice with other PMP22 mutant models reveals that the decrease in ,4 integrin is specific to an absence of PMP22. Furthermore, whereas lysosome-associated membrane protein 1 and ubiquitin are notably up-regulated in nerves of PMP22-deficient mice, heat shock protein 70 levels remain constant or decrease compared with wild-type or PMP22 mutant samples. Together these results support a role for PMP22 in the early events of peripheral nerve myelination. Additionally, although myelin abnormalities are a commonality among PMP22 neuropathic models, the underlying subcellular mechanisms are distinct and depend on the specific genetic abnormality. © 2006 Wiley-Liss, Inc. [source]


Glucocorticoids increase ,5 integrin expression and adhesion of synovial fibroblasts but inhibit ERK signaling, migration, and cartilage invasion

ARTHRITIS & RHEUMATISM, Issue 12 2009
Torsten Lowin
Objective In rheumatoid arthritis (RA), integrins mediate cell adhesion, migration, and invasion, and their expression is regulated by cytokines and growth factors. The aim of this study was to investigate whether hormones such as cortisol or other steroids can influence integrin expression and function in the synovial cells of patients with RA. Methods We performed immunofluorescence and fluorescence-activated cell sorting analyses to quantify surface integrin levels. Adhesion and migration assays were performed to study the function of synovial fibroblasts (SFs). ERK activation was measured by cellular activation of a signaling enzyme-linked immunosorbent assay. Invasion of SFs into cartilage was determined in the SCID mouse coimplantation model of RA in vivo. Results In RA, expression of integrin subunits ,5, ,v, and ,1 was higher at the site of invasion compared with the sublining zone. Testosterone and 17,-estradiol had no influence on integrin levels, but cortisol up-regulated expression of the ,5 subunit in a time-dependent and dose-dependent manner. In addition, cortisol increased the adhesion of SFs to fibronectin and inhibited ERK signaling upon integrin activation or upon stimulation with tumor necrosis factor. Small interfering RNA or a neutralizing antibody to ,5 integrin increased SF migration, indicating that up-regulated ,5 integrin is responsible for an immobile phenotype. In addition, in the SCID mouse model, SF invasion into cartilage was attenuated by glucocorticoid treatment in vivo. Conclusion Glucocorticoids increase integrin expression and the adhesion of cells to fibronectin, inhibit ERK signaling, and down-regulate the invasiveness of SFs in vivo. This study demonstrates that an important antiinflammatory aspect of glucocorticoids is regulating the expression and function of ,5 integrin. [source]


Osteopontin is a new target molecule for ovarian clear cell carcinoma therapy

CANCER SCIENCE, Issue 8 2010
Motoki Matsuura
Recent studies have demonstrated overexpression of osteopontin (OPN) in ovarian clear cell carcinoma. Here, we revealed the role of OPN in invasiveness in ovarian clear cell carcinoma. We used immunofluorescence analysis to detect OPN in a total of 160 patient-derived specimens. Ovarian clear cell carcinoma cell lines, RMG-1 and TOV-21G, were used to monitor changes in OPN and integrin levels, and cell invasiveness following treatment with OPN, simvastatin, and transfection with siRNA. Immunofluorescence analysis revealed statistically significant differences among the histological groups, and ovarian clear cell carcinoma expressed a strong OPN signal. The OPN receptors, alpha v and 5, and beta 1 and 3 integrins, were increased after treatment with OPN. Invasion assays indicated that OPN enhanced in vitro extracellular matrix invasion dose-dependently in ovarian clear cell carcinoma. Simvastatin significantly reduced expression of OPN and the integrins, and decreased ECM invasion. RNA interference also suppressed ECM invasion. These results suggest that down- or up-regulation of OPN is involved in carcinoma cell invasion. We thus conclude that OPN regulation could have a crucial role in ovarian clear cell carcinoma therapy. (Cancer Sci 2010) [source]