Home About us Contact | |||
Integration System (integration + system)
Selected AbstractsSurge Capacity for Health Care Systems: Early Detection, Methodologies, and ProcessACADEMIC EMERGENCY MEDICINE, Issue 11 2006Peter L. Estacio PhD Excessive demand on hospital services from large-scale emergencies is something that every emergency department health care provider and hospital administrator knows could happen at any time. Nowhere in this country have we recently faced a disaster of the magnitude of concern we now face involving agents of mass destruction or social disruption, especially those in the area of infectious diseases and radiological materials. The war on terrorism is not a conventional war, and terrorists may use any means of convenience to carry out their objectives in an unpredictable time line. Have we adequately prepared for the potentially excessive surge in demand for medical services that a large-scale event could bring to our medical care system? Are our emergency departments ready for such events? Surveillance systems, such as BioWatch, BioSense, the National Biosurveillance Integration System, and the countermeasure program BioShield, offer hope that we will be able to meet these new challenges. [source] Evolutionary emergence of synaptic nervous systems: what can we learn from the non-synaptic, nerveless Porifera?INVERTEBRATE BIOLOGY, Issue 1 2010Michael Nickel Abstract. The Porifera represent one of the only two recent nerveless and muscleless metazoan phyla. Nevertheless, sponges provide behavioral, physiological, pharmacological, morphological, and, more recently, an increasing amount of genetic evidence for a paracrine pre-nervous integration system. Although this system might be derived, it allows us to draw conclusions, on the basis of comparative data, about the origin of the nervous system sensu stricto as found in the eumetazoan phyla. The goal of the present review is to compile recent evidence on the sponge integration systems. Based on this framework, new light is also shed on the evolutionary origin of the eumetazoan synaptic nervous systems, which can be regarded to form an evolutionary biochemical continuum with the paracrine signaling system in sponges. Thus, we can assume that the evolutionary transition from a paracrine-dominated, pre-nervous system to an electrochemically dominated, primordial nervous system resulted in part from compartmentalization effects. As intermediate evolutionary stages, regionalized synapse precursor areas might have occurred within pre-nervous cells, which foreshadowed the highly organized synaptic scaffolds present in recent nerve cells of the Eumetazoa. [source] The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memoryJOURNAL OF NEUROCHEMISTRY, Issue 1 2001J. David Sweatt The mitogen-activated protein kinase (MAP kinase, MAPK) cascade, as the name implies, was originally discovered as a critical regulator of cell division and differentiation. As further details of this signaling cascade were worked out, it became clear that the MAPK cascade is in fact a prototype for a family of signaling cascades that share the motif of three serially linked kinases regulating each other by sequential phosphorylation. Thus, a revised nomenclature arose that uses the term MAPK to refer to the entire superfamily of signaling cascades (comprising the erks, the JNKs and the p38 stress activated protein kinases), and specifies the prototype MAPK as the extracellular signal-regulated kinase (erk). The two erk MAPK isoforms, p44 MAPK and p42 MAPK, are referred to as erk1 and erk2, respectively. The erks are abundantly expressed in neurons in the mature central nervous system, raising the question of why the prototype molecular regulators of cell division and differentiation are present in these non-dividing, terminally differentiated neurons. This review will describe the beginnings of an answer to this question. Interestingly, the general model has begun to emerge that the erk signaling system has been co-opted in mature neurons to function in synaptic plasticity and memory. Moreover, recent insights have led to the intriguing prospect that these molecules serve as biochemical signal integrators and molecular coincidence detectors for coordinating responses to extracellular signals in neurons. In this review I will first outline the essential components of this signal transduction cascade, and briefly describe recent results implicating the erks in mammalian synaptic plasticity and learning. I will then proceed to outline recent results implicating the erks as molecular signal integrators and, potentially, coincidence detectors. Finally, I will speculate on what the critical downstream effectors of the erks are in neurons, and how they might provide a readout of the integrated signal. [source] Differential integration efforts of mandatory and optional sentence constituentsPSYCHOPHYSIOLOGY, Issue 5 2006Anat Prior Abstract We investigated the online sensitivity of the semantic integration system to the different roles played by sentence constituents that are necessary (verbs and nouns) or optional (adjectives) for argument completion. We compared the effect of semantic incongruities introduced in both types of words on the N400 ERP component. Participants read sentences for meaning, half of which were rendered anomalous by an incongruent verb, noun, or an early/late adjective. Incongruent adjectives led to smaller N400 effects than did incongruent nouns and verbs, and the congruity effect for sentence-final adjectives was not significant. All incongruities are therefore not created equal: Incongruent optional sentence constituents create less of an integrative burden than incongruent mandatory sentence constituents, suggesting that online sentence integration processes are sensitive to the distinct roles played by different words in shaping sentence meaning. [source] Phage ,C31 integrase-mediated genomic integration of the common cytokine receptor gamma chain in human T-cell linesTHE JOURNAL OF GENE MEDICINE, Issue 5 2006Yoshinori Ishikawa Abstract Background X-linked severe combined immunodeficiency (SCID-X1, X-SCID) is a life-threatening disease caused by a mutated common cytokine receptor , chain (,c) gene. Although ex vivo gene therapy, i.e., transduction of the ,c gene into autologous CD34+ cells, has been successful for treating SCID-X1, the retrovirus vector-mediated transfer allowed dysregulated integration, causing leukemias. Here, to explore an alternative gene transfer methodology that may offer less risk of insertional mutagenesis, we employed the ,C31 integrase-based integration system using human T-cell lines, including the ,c-deficient ED40515(-). Methods A ,C31 integrase and a neor gene expression plasmid containing the ,C31 attB sequence were co-delivered by electroporation into Jurkat cells. After G418 selection, integration site analyses were performed using linear amplification mediated-polymerase chain reaction (LAM-PCR). ED40515(-) cells were also transfected with a ,c expression plasmid containing attB, and the integration sites were determined. IL-2 stimulation was used to assess the functionality of the transduced ,c in an ED40515(-)-derived clone. Results Following co-introduction of the ,C31 integrase expression plasmid and the plasmid carrying attB, the efficiency of integration into the unmodified human genome was assessed. Several integration sites were characterized, including new integration sites in intergenic regions on chromosomes 13 and 18 that may be preferred in hematopoietic cells. An ED40515(-) line bearing the integrated ,c gene exhibited stable expression of the ,c protein, with normal IL-2 signaling, as assessed by STAT5 activation. Conclusions This study supports the possible future use of this ,C31 integrase-mediated genomic integration strategy as an alternative gene therapy approach for treating SCID-X1. Copyright © 2006 John Wiley & Sons, Ltd. [source] An accumulative site-specific gene integration system using cre recombinase-mediated cassette exchangeBIOTECHNOLOGY & BIOENGINEERING, Issue 6 2010Yujiro Kameyama Abstract The Cre- loxP system is frequently used for site-specific recombination in animal cells. The equilibrium and specificity of the recombination reaction can be controlled using mutated loxPs. In the present study, we designed an accumulative site-specific gene integration system using Cre recombinase and mutated loxPs in which the Cre-mediated cassette exchange reaction is infinitely repeatable for target gene integration into loxP target sites. To evaluate the feasibility and usefulness of this system, a series of integration reactions were repeated and confirmed in vitro using Cre recombinase protein and plasmids. Accumulative gene integration was also performed on the genome of Chinese hamster ovary (CHO) cells. The results indicated that the system was applicable for repeated gene integration of multiple genes to the target sites on both plasmids and CHO cell genomes. This gene integration system provides a novel strategy for gene amplification and for biological analyses of gene function through the genetic modification of cells and organisms. Biotechnol. Bioeng. 2010;105: 1106,1114. © 2009 Wiley Periodicals, Inc. [source] Evolutionary emergence of synaptic nervous systems: what can we learn from the non-synaptic, nerveless Porifera?INVERTEBRATE BIOLOGY, Issue 1 2010Michael Nickel Abstract. The Porifera represent one of the only two recent nerveless and muscleless metazoan phyla. Nevertheless, sponges provide behavioral, physiological, pharmacological, morphological, and, more recently, an increasing amount of genetic evidence for a paracrine pre-nervous integration system. Although this system might be derived, it allows us to draw conclusions, on the basis of comparative data, about the origin of the nervous system sensu stricto as found in the eumetazoan phyla. The goal of the present review is to compile recent evidence on the sponge integration systems. Based on this framework, new light is also shed on the evolutionary origin of the eumetazoan synaptic nervous systems, which can be regarded to form an evolutionary biochemical continuum with the paracrine signaling system in sponges. Thus, we can assume that the evolutionary transition from a paracrine-dominated, pre-nervous system to an electrochemically dominated, primordial nervous system resulted in part from compartmentalization effects. As intermediate evolutionary stages, regionalized synapse precursor areas might have occurred within pre-nervous cells, which foreshadowed the highly organized synaptic scaffolds present in recent nerve cells of the Eumetazoa. [source] |