Integral Proteins (integral + protein)

Distribution by Scientific Domains


Selected Abstracts


Lipid,protein modifications during ascorbate-Fe2+ peroxidation of photoreceptor membranes: protective effect of melatonin

JOURNAL OF PINEAL RESEARCH, Issue 3 2006
Margarita H. Guajardo
Abstract:, The rod outer segment (ROSg) membranes are essentially lipoprotein complexes. Rhodopsin, the major integral protein of ROSg, is surrounded by phospholipids highly enriched in docosahexaenoic acid (22:6 n3). This fluid environment plays an important role for conformational changes after photo-activation. Thus, ROSg membranes are highly susceptible to oxidative damage. Melatonin synthesized in the pineal gland, retina and other tissues is a free radical scavenger. The principal aim of this work was to study the changes in the ROSg membranes isolated from bovine retina submitted to nonenzymatic lipid peroxidation (ascorbate-Fe2+ induced), during different time intervals (0,180 min). Oxidative stress was monitored by increase in the chemiluminescence and fatty acid alterations. In addition we studied the in vitro protective effect of 5 mm melatonin. The total cpm originated from light emission (chemiluminescence) was found to be lower in those membranes incubated in the presence of melatonin. The docosahexaenoic acid content decreased considerably when the membranes were exposed to oxidative damage. This reduction was from 35.5 ± 2.9% in the native membranes to 12.65 ± 1.86% in those peroxidized during 180 min. In the presence of 5 mm melatonin we observed a content preservation of 22:6 n3 (23.85 ± 2.77%) at the same time of peroxidation. Simultaneously the alterations of membrane proteins under oxidative stress were studied using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Loss of protein sulfhydryl groups and increased incorporation of carbonyl groups were utilized as biomarkers of protein oxidation. In membranes exposed to Fe2+ -ascorbate, we observed a decrease of protein thiols from 50.9 ± 3.38 in native membranes to 1.72 ± 2.81 nmol/mg of protein after 180 min of lipid peroxidation associated with increased incorporation of carbonyl groups into proteins from 7.20 ± 2.50 to 12.50 ± 1.12 nmol/mg of protein. In the SDS-PAGE we observed a decrease in the content of all the proteins, mainly rhodopsin, as a consequence of peroxidation. Melatonin, prevent both lipid peroxidation and protein oxidation. [source]


Induction of Persistent Double Strand Breaks Following Multiphoton Irradiation of Cycling and G1 -arrested Mammalian Cells,Replication-induced Double Strand Breaks

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 6 2008
Jane V. Harper
DNA double strand breaks (DSBs) are amongst the most deleterious lesions induced within the cell following exposure to ionizing radiation. Mammalian cells repair these breaks predominantly via the nonhomologous end joining pathway which is active throughout the cell cycle and is error prone. The alternative pathway for repair of DSBs is homologous recombination (HR) which is error free and active during S- and G2/M-phases of the cell cycle. We have utilized near-infrared laser radiation to induce DNA damage in individual mammalian cells through multiphoton excitation processes to investigate the dynamics of single cell DNA damage processing. We have used immunofluorescent imaging of ,-H2AX (a marker for DSBs) in mammalian cells and investigated the colocalization of this protein with ATM, p53 binding protein 1 and RAD51, an integral protein of the HR DNA repair pathway. We have observed persistent DSBs at later times postlaser irradiation which are indicative of DSBs arising at replication, presumably from UV photoproducts or clustered damage containing single strand breaks. Cell cycle studies have shown that in G1 cells, a significant fraction of multiphoton laser-induced prompt DSBs persists for >4 h in addition to those induced at replication. [source]


Altered membrane glycoprotein targeting in cholestatic hepatocytes

EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 5 2010
Giuseppa Esterina Liquori
Eur J Clin Invest 2010; 40 (5): 393,400 Abstract Background, Hepatocytes are polarized epithelial cells with three morphologically and functionally distinct membrane surfaces: the sinusoidal, lateral and canalicular surface domains. These domains differ from each other in the expression of integral proteins, which concur to their polarized functions. We hypothesize that the cholestasis-induced alterations led to partial loss of hepatocyte polarity. An altered expression of membrane proteins may be indicative of functional disorders. Alkaline liver phosphatase (ALP), one of the most representative plasma membrane glycoproteins in hepatocytes, is expressed at the apical (canalicular) pole of the cell. Because the release of ALP protein in the bloodstream is significantly increased in cholestasis, the enzymatic levels of plasma ALP have major relevance in the diagnosis of cholestatic diseases. Here we assess the cholestasis-induced redistribution of membrane glycoproteins to investigate the ALP release. Materials and methods, We performed enzymatic histochemistry, immunohistochemistry, lectin histochemistry, immunogold and lectin-and immunoblotting studies. Experimental cholestasis was induced in rats by ligation of common bile duct (BDL). Results, The BDL led to altered membrane sialoglycoprotein targeting as well as to ultrastructural and functional disorders. Disarrangement of the microtubular system, thickening of the microfilamentous pericanalicular ectoplasm and disturbance of the vectorial trafficking of membrane glycoprotein containing vesicles were found. Conclusions, Altogether, results indicate that the cholestasis-induced partial loss of hepatocyte cell polarity leads to mistranslocation of ALP to the sinusoidal plasma membrane from where the enzyme is then massively released into the bloodstream. [source]


Biophysical characterization of synthetic rhamnolipids

FEBS JOURNAL, Issue 22 2006
Jörg Howe
Synthetic rhamnolipids, derived from a natural diacylated glycolipid, RL-2,214, produced by Burkholderia (Pseudomonas) plantarii, were analyzed biophysically. Changes in the chemical structures comprised variations in the length, the stereochemistry and numbers of the lipid chains, numbers of rhamnoses, and the occurrence of charged or neutral groups. As relevant biophysical parameters, the gel (,) to liquid crystalline (,) phase behavior of the acyl chains of the rhamnoses, their three-dimensional supramolecular aggregate structure, and the ability of the compounds to intercalate into phospholipid liposomes in the absence and presence of lipopolysaccharide-binding protein were monitored. Their biological activities were examined as the ability to induce cytokines in human mononuclear cells and to induce chemiluminescence in monocytes. Depending on the particular chemical structures, the physicochemical parameters as well as the biological test systems show large variations. This relates to the acyl chain fluidity, aggregate structure, and intercalation ability, as well as the bioactivity. Most importantly, the data extend our conformational concept of endotoxicity, based on the intercalation of naturally originating amphiphilic virulence factors into membranes from immune cells. This ,endotoxin conformation', produced by amphiphilic molecules with a hydrophilic charged backbone and apolar hydrophobic moiety, and adopting inverted cubic aggregate structures, causes high mechanical stress in target immune cells on integral proteins, eventually leading to cell activation. Furthermore, biologically inactive rhamnolipids with lamellar aggregate structures antagonize the endotoxin-induced activity in a way similar to lipid A-derived antagonists. [source]


Thermotropic Lipid Phase Transition and the Behavior of Hydrolytic Enzymes in the Kidney Cortex Brush Border Membrane

CHEMISTRY & BIODIVERSITY, Issue 10 2006
Sankar
Abstract Functional interactions of lipids and proteins were examined in brush-border membranes isolated from the kidney cortex by studying the temperature dependence of the hydrolytic enzyme activities. A close relationship was observed for the membrane proteins and the thermotropic lipid phase transitions. Three lines of evidences were provided for such dependence: a) Arrhenius relationship of the membrane-bound enzyme activities, and the effect of temperature in native and partially delipidated membranes, b) differential scanning calorimetric study of the membrane lipid phase transitions in the native and delipidated membranes, multilamellar vesicles prepared from the membrane extracted lipids, and in vesicles from dimyristoyl phosphatidylcholine, and c) the excimer (dimer)-formation studies of the membrane extrinsic fluorescent probe, pyrene, and the resultant membrane microviscosity. The brush-border membranes were partially delipidated with BuOH and 2,2,2-trifluoroethanol. The functional interactions of the delipidated membranes, which were greatly lost on lipid removal, were largely restored by the addition of exogenous lipids in the reconstitution process, which indicate the critical dependence of the membrane integral proteins on the neighboring lipid molecules in the bulk lipid phase. [source]