And The Environment (and + the_environment)

Distribution by Scientific Domains

Kinds of And The Environment

  • health and the environment


  • Selected Abstracts


    Using a Geographic Information System to identify areas with potential for off-target pesticide exposure

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 8 2006
    Thomas G. Pfleeger
    Abstract In many countries, numerous tests are required as part of the risk assessment process before chemical registration to protect human health and the environment from unintended effects of chemical releases. Most of these tests are not based on ecological or environmental relevance but, rather, on consistent performance in the laboratory. A conceptual approach based on Geographic Information System (GIS) technology has been developed to identify areas that are vulnerable to nontarget chemical exposure. This GIS-based approach uses wind speed, frequency of those winds, pesticide application rates, and spatial location of agricultural crops to identify areas with the highest potential for pesticide exposure. A test scenario based on an incident in Idaho (USA) was used to identify the relative magnitude of risk from off-target movement of herbicides to plants in the conterminous United States. This analysis indicated that the western portion of the Corn Belt, the central California valley, southeastern Washington, the Willamette Valley of Oregon, and agricultural areas bordering the Great Lakes are among those areas in the United States that appear to have the greatest potential for off-target movement of herbicides via drift. Agricultural areas, such as the Mississippi River Valley and the southeastern United States, appears to have less potential, possibly due to lower average wind speeds. Ecological risk assessments developed for pesticide registration would be improved by using response data from species common to high-risk areas instead of extrapolating test data from species unrelated to those areas with the highest potential for exposure. [source]


    Cadmium leaching from some New Zealand pasture soils

    EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 1 2003
    C. W. Gray
    Summary Cadmium (Cd) inputs and losses from agricultural soils are of great importance because of the potential adverse effects Cd can pose to food quality, soil health and the environment in general. One important pathway for Cd losses from soil systems is by leaching. We investigated loss of Cd from a range of contrasting New Zealand pasture soils that had received Cd predominantly from repeated applications of phosphate fertilizer. Annual leaching losses of Cd ranged between 0.27 and 0.86 g ha,l, which are less than most losses recorded elsewhere. These losses equate to between 5 and 15% of the Cd added to soil through a typical annual application of single superphosphate, which in New Zealand contains on average 280 mg Cd kg,1 P. It appears that Cd added to soil from phosphate fertilizer is fairly immobile and Cd tends to accumulate in the topsoil. The pH of the leachate and the total volume of drainage to some extent control the amount of Cd leached. Additional factors, such as the soil sorption capacity, are also important in controlling Cd movement in these pasture soils. The prediction of the amount of Cd leached using the measured concentrations of Cd in the soil solution and rainfall data resulted in an overestimation of Cd losses. Cadmium concentrations in drainage water are substantially less than the current maximum acceptable value of 3 µg l,1 for drinking water in New Zealand set by the Ministry of Health. [source]


    Bioaccessibility studies of ferro-chromium alloy particles for a simulated inhalation scenario: A comparative study with the pure metals and stainless steel

    INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT, Issue 3 2010
    Klara Midander
    Abstract The European product safety legislation, REACH, requires that companies that manufacture, import, or use chemicals demonstrate safe use and high level of protection of their products placed on the market from a human health and environmental perspective. This process involves detailed assessment of potential hazards for various toxicity endpoints induced by the use of chemicals with a minimum use of animal testing. Such an assessment requires thorough understanding of relevant exposure scenarios including material characteristics and intrinsic properties and how, for instance, physical and chemical properties change from the manufacturing phase, throughout use, to final disposal. Temporary or permanent adverse health effects induced by particles depend either on their shape or physical characteristics, and/or on chemical interactions with the particle surface upon human exposure. Potential adverse effects caused by the exposure of metal particles through the gastrointestinal system, the pulmonary system, or the skin, and their subsequent potential for particle dissolution and metal release in contact with biological media, show significant gaps of knowledge. In vitro bioaccessibility testing at conditions of relevance for different exposure scenarios, combined with the generation of a detailed understanding of intrinsic material properties and surface characteristics, are in this context a useful approach to address aspects of relevance for accurate risk and hazard assessment of chemicals, including metals and alloys and to avoid the use of in vivo testing. Alloys are essential engineering materials in all kinds of applications in society, but their potential adverse effects on human health and the environment are very seldom assessed. Alloys are treated in REACH as mixtures of their constituent elements, an approach highly inappropriate because intrinsic properties of alloys generally are totally different compared with their pure metal components. A large research effort was therefore conducted to generate quantitative bioaccessibility data for particles of ferro-chromium alloys compared with particles of the pure metals and stainless steel exposed at in vitro conditions in synthetic biological media of relevance for particle inhalation and ingestion. All results are presented combining bioaccessibility data with aspects of particle characteristics, surface composition, and barrier properties of surface oxides. Iron and chromium were the main elements released from ferro-chromium alloys upon exposure in synthetic biological media. Both elements revealed time-dependent release processes. One week exposures resulted in very small released particle fractions being less than 0.3% of the particle mass at acidic conditions and less than 0.001% in near pH-neutral media. The extent of Fe released from ferro-chromium alloy particles was significantly lower compared with particles of pure Fe, whereas Cr was released to a very low and similar extent as from particles of pure Cr and stainless steel. Low release rates are a result of a surface oxide with passive properties predominantly composed of chromium(III)-rich oxides and silica and, to a lesser extent, of iron(II,III)oxides. Neither the relative bulk alloy composition nor the surface composition can be used to predict or assess the extent of metals released in different synthetic biological media. Ferro-chromium alloys cannot be assessed from the behavior of their pure metal constituents. Integr Environ Assess Manag 2010;6:441,455. © 2009 SETAC [source]


    REACH: impact on the US cosmetics industry?

    JOURNAL OF COSMETIC DERMATOLOGY, Issue 1 2009
    Anne Pouillot MS
    Summary The Registration, Evaluation, Authorization and restriction of Chemicals (REACH) is a recent European regulation on chemical substances meant to protect human health and the environment. REACH imposes the "precautionary principle" where additional data and definitive action are required when uncertainty is identified. The cosmetics industry is only partially concerned by REACH: while the stages of registration and evaluation apply to cosmetics, those of authorization and restriction most likely will not, as cosmetic ingredients are already subject to regulation by various agencies and directives. REACH has potential benefits to the industry including the possibility of reassuring consumers and improving their image of chemicals and cosmetics. However, REACH also has potential disadvantages, mainly with regard to impeding innovation. The American cosmetics industry will be affected by REACH, because all US manufacturers who export substances to Europe will have to fully comply with REACH. [source]


    Multivariate analysis of toxicological and environmental properties of soil nematicides

    PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 1 2009
    Sara Sánchez-Moreno
    Abstract BACKGROUND: In intensive agriculture, the use of pesticides and soil fumigants is necessary to produce economically viable crops worldwide. However, this practice may involve undesirable effects on human health and the environment. In 1995, methyl bromide was restricted by the Montreal Protocol because of possible ozone depletion. The objective of this study was to compare intrinsic environmental and toxicological properties of 11 active substances with nematicidal properties, some of them recognized as methyl bromide alternatives. RESULTS: Four groups of active substances were discriminated by a series of principal component analyses (PCAs): (a) high toxicity to non-target fauna, humans and animals and medium persistence in the environment (cadusafos, ethoprophos and fenamiphos); (b) high toxicity to humans, animals and non-target fauna and high persistence (carbofuran and fosthiazate); (c) low toxicity to non-target fauna, humans and animals and low persistence (carbosulfan, benfuracarb and oxamyl); (d) low toxicity to humans, animals and non-target fauna and medium persistence in the environment (1,3-dichloropropene, chloropicrin and methyl bromide). CONCLUSION: Evaluating the multiple aspects of toxicological and environmental properties of active substances through PCA is proposed as a helpful tool for initially comparing the complex toxicological behaviour of active substances as plant protection products. Copyright © 2008 Society of Chemical Industry [source]


    Use of mixed technologies to remediate chlorinated DNAPL at a Brownfields site

    REMEDIATION, Issue 3 2008
    David Robinson
    A former chlorofluorocarbon manufacturing facility in northern New Jersey was purchased for redevelopment as a warehousing/distribution center as part of the New Jersey Department of Environmental Protection's Brownfields redevelopment initiative. Soil and groundwater at the site were impacted with dense nonaqueous-phase liquids (chlorinated organic compounds) and light nonaqueous-phase liquids (petroleum hydrocarbons). The initial remedial strategy (excavation and offsite disposal) developed by prior site owners would have been cost-prohibitive to the new site owners and made redevelopment infeasible. Mixed remedial technologies were employed to reduce the cost of remediation while meeting regulatory contaminant levels that are protective of human health and the environment. The most heavily impacted soils (containing greater than 95 percent of the contaminant mass) were excavated and treated onsite by the addition of calcium oxide and lime kiln dust coupled with physical mixing. Treated soils were reused onsite as part of the redevelopment. Residual soil and groundwater contamination was treated via in situ injections of emulsified oil to enhance anaerobic biodegradation, and emulsified oil/zero-valent iron to chemically reduce residual contaminants. Engineering (cap) and administrative (deed restriction) controls were used as part of the final remedy. The remedial strategy presented in this article resulted in a cost reduction of 50 percent of the initial remedial cost estimate. © 2008 Wiley Periodicals, Inc. [source]


    Remediation process optimization: A status report

    REMEDIATION, Issue 3 2007
    Sriram Madabhushi
    There are hundreds of contaminated sites with remediation systems that require evaluation and modification to accomplish cleanup goals. These systems are operating well past projected cleanup schedules, cost more than projected to operate, and may not be as protective of human health and the environment as planned. Remediation process optimization (RPO) is an effective method to assess the progress of a system toward achieving cleanup goals within desired time frames and to make the necessary changes in order to reach those goals. Eight main components to the RPO process are evaluated during a review and an implementation plan of recommended changes to the system is developed. Follow-up and tracking are essential to successful RPO programs. In this article, the authors present a summary of a recent Technical and Regulatory (TechReg) Guidance Document (Interstate Technology and Regulatory Council [ITRC], 2004) and related Technology Overview Series on Advanced Topics in RPO (ITRC, 2006) in a distilled form. © 2007 Wiley Periodicals, Inc. [source]


    Superfund cleanup: Designing containment remedies for recreational reuse

    REMEDIATION, Issue 2 2000
    Joseph D. King
    In July, 1999, EPA announced its Superfund Redevelopment Initiative, the Agency's effort to help communities bring Superfund sites back into productive use in a manner that is protective of human health and the environment. As part of the Superfund Redevelopment Initiative, the Agency is developing reuse design guides that provide technical information related to the design of remedies that safely support reuse. The design guides focus on the reuse of containment sites, and address such topics as settlement, gas control, irrigation, drainage, and operation and maintenance. Case studies of redeveloped sites are also presented in the guides. EPA is currently developing design guides that address the reuse of Superfund sites for commercial purposes, wildlife areas, parking lots, recreational sports fields, and golf courses. This article provides information on the first guide in the series-the reuse of Superfund sites for recreational purposes. [source]


    Mechanisms of Submicron and Residual Ash Particle Formation during Pulverised Coal Combustion: A Comprehensive Review

    ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 3-4 2005
    D. Yu
    Coal fly ash has been a traditional concern of utilities since coal was used to generate electricity because it may bring about a number of technical and economic problems such as slagging, fouling, corrosion, erosion, waste disposal and overall boiler efficiency reduction. Moreover, fine particulates that escape the combustion system are recognized to have a negative impact on health and the environment due to the enrichment of the toxic trace elements and being readily inhaled. This work gives a brief review of the studies carried out in the past decades and tries to elucidate those processes that contribute to ash formation. They include the mechanisms that control submicron ash formation and those that are related to residual ash formation. The mechanism of vaporization and condensation is believed to be the major source of submicron ash particles and is discussed in detail in this review. Residual ash formation is the consequence of the competition between ash coalescence and char fragmentation. Moreover, fragmentation of excluded minerals and rotationally induced shedding may also contribute to the residual ash formation. Our literature review has provided a number of experimental and theoretical results describing how the submicron ash and residual ash are formed, Finally we present some recommendations for possible future research topics, including sampling techniques, measurement techniques, experimental studies and modelling efforts. [source]