Intake

Distribution by Scientific Domains
Distribution within Medical Sciences

Kinds of Intake

  • acceptable daily intake
  • acid intake
  • adequate intake
  • alcohol intake
  • and vegetable intake
  • and water intake
  • antioxidant intake
  • average intake
  • c intake
  • caffeine intake
  • calcium intake
  • caloric intake
  • calorie intake
  • carbohydrate intake
  • coffee intake
  • copper intake
  • d intake
  • daily caloric intake
  • daily energy intake
  • daily ethanol intake
  • daily feed intake
  • daily food intake
  • daily intake
  • decrease food intake
  • decreased food intake
  • dietary calcium intake
  • dietary fat intake
  • dietary intake
  • dietary reference intake
  • dietary salt intake
  • dietary sodium intake
  • dm intake
  • drug intake
  • dry matter intake
  • e intake
  • energy intake
  • ethanol intake
  • excessive alcohol intake
  • excessive intake
  • fat intake
  • fatty acid intake
  • feed intake
  • fiber intake
  • fibre intake
  • fish intake
  • fluid intake
  • fluoride intake
  • food and water intake
  • food intake
  • frequent intake
  • fruit and vegetable intake
  • fruit intake
  • herbage intake
  • high calcium intake
  • high intake
  • high salt intake
  • increased food intake
  • increased intake
  • increasing intake
  • iodine intake
  • iron intake
  • lifetime alcohol intake
  • low calcium intake
  • low intake
  • lower intake
  • macronutrient intake
  • maternal intake
  • matter intake
  • meal intake
  • mean intake
  • meat intake
  • milk intake
  • moderate alcohol intake
  • moderate intake
  • nitrogen intake
  • nutrient intake
  • nutritional intake
  • oral intake
  • protein intake
  • reduced food intake
  • reduced intake
  • reference intake
  • residual feed intake
  • saccharin intake
  • salt intake
  • se intake
  • sodium intake
  • sucrose intake
  • sugar intake
  • tolerable daily intake
  • total energy intake
  • total fluid intake
  • total fluoride intake
  • total food intake
  • total intake
  • vegetable intake
  • vitamin c intake
  • vitamin d intake
  • vitamin e intake
  • vitamin intake
  • voluntary food intake
  • voluntary intake
  • water intake
  • zinc intake

  • Terms modified by Intake

  • intake data
  • intake decreased
  • intake frequency
  • intake level
  • intake pattern
  • intake rate

  • Selected Abstracts


    EFFECT OF EXPOSURE TO THE AROMA OF A PRELOAD ON SUBSEQUENT INTAKE OF A FOOD WITH THE SAME AROMA

    JOURNAL OF SENSORY STUDIES, Issue 4 2002
    J.-X. GUINARD
    ABSTRACT We tested the hypothesis that exposure to an aroma through a food or beverage in the first part of a meal (preload) would reduce the consumption of a food with the same aroma in the second portion of the meal, because of olfactory-specific satiety. In a first experiment, 35 young, normal-weight adults participated in 2 lunch sessions during which they consumed a fixed preload of either ranch-flavored or plain potato chips and sparkling water, followed by ad libitum consumption of a pasta salad with ranch dressing and sparkling water. In the second experiment, 33 subjects consumed a fixed preload of either lemon-flavored or plain sparkling water and pasta salad with ranch dressing, followed by ad libitum consumption of lemon-flavored yogurt and plain sparkling water. No difference was observed in the amount of food consumed (corrected for session order effects) as a function of prior exposure to ranch flavor in the chips or lemon flavor in the water. We conclude that exposure to a preload aroma may not have a significant effect on subsequent intake of a food with the same aroma. [source]


    TASTE PERCEPTIONS AND DIETARY INTAKES OF SMOKELESS TOBACCO USERS AND NONTOBACCO USERS,

    JOURNAL OF SENSORY STUDIES, Issue 3 2005
    RHONDA A. SCHUELLER
    ABSTRACT Smokeless tobacco and nontobacco users differed for certain concentrations of perceived intensities of the four solutions , significantly for sweet (P , 0.008) and salty (P = 0.001). Sensitivity to salty (P = 0.02) and bitter (P = 0.11) solutions decreased with increasing hours of exposure to smokeless tobacco. Smokeless tobacco and nontobacco users rated fruits and vegetables for preference and the four taste senses differently, with a decreasing trend for sweet tastes in smokeless tobacco users with increasing hours of exposure to smokeless tobacco. Smokeless tobacco users consumed more total fat (P = 0.06) and fat per 1000 kcal (P = 0.13) than nontobacco users. Higher intakes of total fat (P = 0.005), total fat per 1000 kcal (P = 0.18), total sodium (P = 0.03) and total Vitamin E (P = 0.06) were found with increasing hours of exposure to smokeless tobacco. Although fruit and vegetable intakes did not differ between smokeless tobacco and nontobacco users, both groups should increase their consumption of fruits and vegetables. [source]


    Hyperphagia and obesity of OLETF rats lacking CCK1 receptors: Developmental aspects

    DEVELOPMENTAL PSYCHOBIOLOGY, Issue 5 2006
    Timothy H. Moran
    Abstract Otsuka Long Evans Tokushima Fatty (OLETF) rats have a deletion in the gene encoding the cholecystokinin,1 (CCK1) receptor. This deletion prevents protein expression, making the OLETF rat a CCK1 receptor knockout model. Consistent with the absence of CCK1 receptors, OLETF rats do not reduce their food intake in response to exogenously administered CCK and consume larger than normal meals. This deficit in within-meal feedback signaling is evident in liquid as well as solid meals. Neonatal OLETF rats show similar differences in independent ingestion tests. Intake is higher and is reflected in greater licking behavior. Neonatal OLETF rats also have diminished latencies to consume and higher initial ingestion rats. Adult OLETF rats are hyperphagic and obese. Although arcuate nucleus peptide gene expression is apparently normal in OLETF rats, when obesity is prevented through pair-feeding to amounts consumed by control Long Evans Tokushima Otsuka (LETO) rats, dorsomedial hypothalamic NPY mRNA expression is significantly elevated in OLETF rats. NPY overexpression is also evident in preobese, juvenile OLETF rats suggesting a causal role for this overexpression in the hyperphagia and obesity. Running wheel exercise normalizes food intake and body weight in OLETF rats. When access to exercise is provided at a time when OLETF rats are obese, the effects are limited to the period of exercise. When running wheel access is available to younger, preobese OLETF rats, exercise results in long lasting reductions in food intake and body weight and improved glucose regulation. These lasting metabolic effects of exercise may be secondary to an exercise induced reduction in DMH NPY mRNA expression. © 2006 Wiley Periodicals, Inc. Dev Psychobiol 48: 360,367, 2006. [source]


    Shrimp,a dynamic model of heavy-metal uptake in aquatic macrofauna

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 11 2001
    Teresa Castro Simas
    Abstract A dynamic model for prediction of bioaccumulation in aquatic macrofauna is described. The model, entitled SHRIMP (Simulation of Heavy-metal Rate of Intake for Macrofaunal sPecies), consists of five coupled submodels, which simulate individual growth, population dynamics, metal transport in the abiotic part of the system, metal bioaccumulation at the organism level, and upscaling of individual contamination to the population scale. The sublethal effects of metal toxicity on individual and population levels are shown to act through the reduction of individual growth rates. The model was tested for cadmium and mercury using epibenthic crustacea from an estuarine system. Individual and population patterns of bioaccumulation were analyzed by comparing the simulated results of five different scenarios of dissolved metal concentrations. Model results suggest that the subtle effect of growth reduction due to metal toxicity is sufficient to cause a decrease on population numbers simply by affecting the growth of the mature females and males. [source]


    Taking an Undergraduate Nutrition Course Results in Favorable Attitudes Toward a Healthful Diet and Improved Intake of Several Key Nutrients

    FAMILY & CONSUMER SCIENCES RESEARCH JOURNAL, Issue 1 2009
    Roman Pawlak
    The purpose of this research was to assess the impact of introductory undergraduate nutrition course on students' attitudes toward healthy diet and on students' intake of nutrients. A pre and post-test design was used to assess changes in self-reported nutrient intake. Open-ended questions were asked to elicit responses about how/whether the course had any impact on their attitudes toward foods and dietary behavior. A statistically significant increase in fiber, folate, potassium, and calcium intake were observed, comparing post to pre-test. A decrease in saturated fat intake in terms of energy percentage was observed. Increased awareness of the impact of diet on health was reported by students. A desire to increase intake of fruits, vegetables, and whole grains, and to decrease intake of fat and sugar was also reported. Students reported a willingness to eat less fast food and candies as well as drink fewer sodas. Thus, in this study a college nutrition course did effectively increase awareness of a healthy diet as well as change in attitude and modify dietary behavior. [source]


    Intake, liveweight gain and feed preference by steers fed combinations of lucerne and Westerwolds ryegrass silages

    GRASS & FORAGE SCIENCE, Issue 1 2002
    E. Charmley
    Nutritive value and voluntary intake of legumes are generally considered to be higher than those of grasses when ensiled at similar digestibility, although high levels of soluble protein can result in low N utilization by animals and high losses to the environment. The objectives of this experiment were to describe the optimum combination of Westerwolds ryegrass (Lolium multiflorum Lam. cv. Aubade) and lucerne (Medicago sativa L. cv. AC Caribou) silages to maximize liveweight gain of steers fed silage, determine chemical components that are important and ascertain whether steers selected the optimum mixture when given a choice. Both silages contained similar concentrations of dry matter (DM), acid-detergent fibre (ADF) and organic acids, but lucerne silage had higher concentrations of N, soluble-N and ammonia-N. Westerwolds ryegrass silage contained more neutral-detergent fibre (NDF). In a 12-week experiment, voluntary intake by Hereford steers was not influenced when the proportion of the two silages was changed from 1 to 0 in 0·25 increments. However, liveweight gain and feed efficiency increased linearly (P < 0·001) as the proportion of ryegrass silage fed was increased. When preconditioned to either of the two silages, steers showed a significant preference for ryegrass over lucerne (P < 0·05). When conditioned to a mixture of both silages, no preference was elicited. It is suggested that extensive solubilization and deamination of protein in the lucerne silage may have caused the preference for Westerwolds ryegrass silage and the higher liveweight gains on diets containing higher proportions of Westerwolds ryegrass silage. [source]


    Acoustic measurement of intake and grazing behaviour of cattle

    GRASS & FORAGE SCIENCE, Issue 2 2000

    Acoustic analysis of grazing behaviour was found to allow accurate identification of chewing and biting, and estimation of intake by cattle. Four steers grazed six types of turves, three were short (14, 16 and 20 cm tall), leafy turves from mowed Setaria lutescens with high application of N fertilizer, and three were tall (36, 49 and 62 cm tall), mature turves from uncut areas with low application of N fertilizer. Each animal grazed ten bites from each turf type while behaviour was videotaped and grazing sounds were recorded with a wireless microphone taped to the animal's forehead. The intake was measured by the difference in pre- and post-grazing turf weight, corrected for water loss. Chews and bites differed in acoustic characteristics, with bites producing more output in the 3,8 kHz frequency band. Discriminant analysis of the acoustic characteristics correctly classified chews and bites with 94% accuracy. Intake was predicted with a high degree of accuracy by total energy flux density (fJ m,2) in chewing sounds (EFDC), EFDC per chew and average intensity of chewing sound in the 1,2 and 2,3 kHz bands (R2=0·90, CV=3·6%). Although bite mass ranged from 1·37 to 4·50 g, EFDC per g of intake (CV=0·015) was not affected by treatments or animals. Chewing sounds carried more information about intake than biting sounds and chews per bite. Analysis of grazing sounds has the potential to overcome many of the problems associated with the measurement of grazing intake. [source]


    High salt diets dose-dependently promote gastric chemical carcinogenesis in Helicobacter pylori -infected Mongolian gerbils associated with a shift in mucin production from glandular to surface mucous cells

    INTERNATIONAL JOURNAL OF CANCER, Issue 7 2006
    Sosuke Kato
    Abstract Intake of salt and salty food is known as a risk factor for gastric carcinogenesis. To examine the dose-dependence and the mechanisms underlying enhancing effects, Mongolian gerbils were treated with N -methyl- N -nitrosourea (MNU), Helicobacter pylori and food containing various concentrations of salt, and were sacrificed after 50 weeks. Among gerbils treated with MNU and H. pylori, the incidences of glandular stomach cancers were 15% in the normal diet group and 33%, 36% and 63% in the 2.5%, 5% and 10% NaCl diet groups, showing dose-dependent increase (p < 0.01). Intermittent intragastric injection of saturated NaCl solution, in contrast, did not promote gastric carcinogenesis. In gerbils infected with H. pylori, a high salt diet was associated with elevation of anti- H. pylori antibody titers, serum gastrin levels and inflammatory cell infiltration in a dose-dependent fashion. Ten percent NaCl diet upregulated the amount of surface mucous cell mucin (p < 0.05), suitable for H. pylori colonization, despite no increment of MUC5AC mRNA, while H. pylori infection itself had an opposing effect, stimulating transcription of MUC6 and increasing the amount of gland mucous cell mucin (GMCM). High salt diet, in turn, decreased the amount of GMCM, which acts against H. pylori infection. In conclusion, the present study demonstrated dose-dependent enhancing effects of salt in gastric chemical carcinogenesis in H. pylori -infected Mongolian gerbils associated with alteration of the mucous microenvironment. Reduction of salt intake could thus be one of the most important chemopreventive methods for human gastric carcinogenesis. © 2006 Wiley-Liss, Inc. [source]


    Preschool diet and adult risk of breast cancer

    INTERNATIONAL JOURNAL OF CANCER, Issue 3 2006
    Karin B. Michels
    Abstract Events before puberty may affect adult risk of breast cancer. We examined whether diet during preschool age may affect a woman's risk of breast cancer later in life. We conducted a case-control study including 582 women with breast cancer and 1,569 controls free of breast cancer selected from participants in the Nurses' Health Study and the Nurses' Health Study II. Information concerning childhood diet of the nurses at ages 3,5 years was obtained from the mothers of the participants with a 30-item food-frequency questionnaire. An increased risk of breast cancer was observed among woman who had frequently consumed French fries at preschool age. For one additional serving of French fries per week, the odds ratio (OR) for breast cancer adjusted for adult life breast cancer risk factors was 1.27 (95% confidence interval [CI] = 1.12,1.44). Consumption of whole milk was associated with a slightly decreased risk of breast cancer (covariate-adjusted OR for every additional glass of milk per day = 0.90; 95% CI = 0.82,0.99). Intake of none of the nutrients calculated was related to the risk of breast cancer risk in this study. These data suggest a possible association between diet before puberty and the subsequent risk of breast cancer. Differential recall of preschool diet by the mothers of cases and controls has to be considered as a possible explanation for the observed associations. Further studies are needed to evaluate whether the association between preschool diet and breast cancer is reproducible in prospective data not subject to recall bias. © 2005 Wiley-Liss, Inc. [source]


    Intake of melatonin is associated with amelioration of physiological changes, both metabolic and morphological pathologies associated with obesity: an animal model

    INTERNATIONAL JOURNAL OF EXPERIMENTAL PATHOLOGY, Issue 1 2007
    Mahmoud R. Hussein
    Summary Obesity and its associated metabolic pathologies are the most common and detrimental diseases, affecting over 50% of the adult population. Our knowledge about the protective effects of melatonin against high-fat diet (HFD)-induced obesity is still marginal. In this investigation, we hypothesized that melatonin can minimize the metabolic pathologies and morphological changes associated with obesity in animals receiving an HFD. To examine these effects, and to test our hypothesis, an animal model formed of male Boscat white rabbits was established. The animals were divided into three groups: (i) a control group fed regular diet; (ii) an obesity group fed an HFD for 12 weeks; and (iii) a treated group fed HFD for 12 weeks and then treated with melatonin for 4 weeks. The animals were killed and their serum and tissues were evaluated for: (i) lipid profile (cholesterol, triglycerides and low-density lipoprotein) and glucose; (ii) antioxidant enzyme (serum glutathione peroxidase, GSH-PX); and (iii) fatty changes (liver, kidney and blood vessels). Compared with the control group, intake of HFD (obesity group) was associated with: (i) a statistically significant increase in blood pressure, heart rate, sympathetic nerve activity, body weight, food consumption, serum lipids, blood glucose levels and atherogenic index; (ii) decreased level of GSH-PX and high-density lipoprotein (HDL); and (iii) fatty changes in the liver and kidney as well as atheromatous changes in the blood vessels. Compared with the obesity group, intake of melatonin (treated group) was associated with: (i) a statistically significant decrease in blood pressure, heart rate, sympathetic nerve activity, body weight, food consumption, serum lipids, blood glucose levels and atherogenic index; (ii) increased level of GSH-PX and HDL; and (iii) disappearance of fatty changes in the liver and kidney as well as atheromatous changes in the blood vessels. The administration of melatonin reduced the metabolic pathologies associated with the intake of HFD, suggesting a protective role. Although the underlying mechanisms are unclear, they may include its antioxidant and receptor-mediated effects. The clinical ramifications of these effects await further investigations. [source]


    An Intervention to Increase Fluid Intake in Nursing Home Residents: Prompting and Preference Compliance

    JOURNAL OF AMERICAN GERIATRICS SOCIETY, Issue 7 2001
    Sandra F. Simmons PhD
    OBJECTIVE: To evaluate a three-phase, behavioral intervention to improve fluid intake in nursing home (NH) residents. DESIGN: Controlled clinical intervention trial. SETTING: Two community NHs. PARTICIPANTS: Sixty-three incontinent NH residents. INTERVENTION: Participants were randomized into intervention and control groups. The intervention consisted of three phases for a total of 32 weeks: (1) 16 weeks of four verbal prompts to drink per day, in between meals; (2) 8 weeks of eight verbal prompts per day, in between meals; and (3) 8 weeks of eight verbal prompts per day, in between meals, plus compliance with participant beverage preferences. MEASUREMENTS: Between-meal fluid intake was measured in ounces by research staff during all three phases of the intervention. Percentage of fluids consumed during meals was also estimated by research staff for a total of nine meals per participant (3 consecutive days) at baseline and at 8 and 32 weeks into the intervention. Serum osmolality, blood urea nitrogen, and creatinine values were obtained for all participants in one of the two sites at the same three time points. RESULTS: The majority (78%) of participants increased their fluid intake between meals in response to the increase in verbal prompts (phase 1 to 2). A subset of residents (21%), however, only increased their fluid intake in response to beverage preference compliance (phase 3). There was a significant reduction in the proportion of intervention participants who had laboratory values indicative of dehydration compared with the control participants. Cognitive and nutritional status were predictive of residents' responsiveness to the intervention. CONCLUSIONS: A behavioral intervention that consists of verbal prompts and beverage preference compliance was effective in increasing fluid intake among most of a sample of incontinent NH residents. Verbal prompting alone was effective in improving fluid intake in the more cognitively impaired residents, whereas preference compliance was needed to increase fluid intake among less cognitively impaired NH residents. [source]


    ORIGINAL ARTICLE: Description of development of rumen ecosystem by PCR assay in milk-fed, weaned and finished lambs in an intensive fattening system

    JOURNAL OF ANIMAL PHYSIOLOGY AND NUTRITION, Issue 5 2010
    A. Belanche
    Summary This study examined the reticulo-rumen characteristics of the microbial community and its fermentative characteristics in milk-fed, at weaning and finished lambs in a conventional fattening system. Five lambs were assigned to each of three groups: milk-fed lambs slaughtered at 30 days (T30), weaned lambs slaughtered at 45 days (T45) and ,finished lambs' slaughtered at 90 days (T90). At slaughter, rumen size, fermentation parameters (pH, volatile fatty acids and microbial enzyme activity) and protozoal counts were recorded. Quantitative PCR was used to quantify the genes encoding 16S and 18S ribosomal DNA of the rumen bacterial and protozoal populations, respectively, and the sequential colonization of the rumen by cellulolytic (Ruminococcus albus, Ruminococcus flavefaciens) and amylolytic (Prevotella ruminicola, Streptococcus bovis) bacteria, and protozoa (Entodinium sp.). Denaturing gradient gel electrophoresis was used to study the development of rumen microbiota biodiversity. Intake of solid food before weaning caused a significant increase in rumen weight (p < 0.0001) and bacterial DNA (p < 0.05) and volatile fatty acid analysis concentration (p < 0.01), whereas pH declined. In milk-fed lambs, cellulolytic bacteria were evident after 30 days. Thereafter, in the 45-day and 90-day groups, the proportions of R. flavefaciens decreased and R. albus increased. Amylolytic bacteria were present in milk-fed lambs; the proportion of P. ruminicola increased in fattening lambs and S. bovis was the least abundant species. Protozoal concentrations were irregular; milk-fed lambs had a significant number of protozoa species from Entodinium and subfamily Isotrichiidae, but they disappeared at weaning. Lamb rumen were refaunated in some individuals at 90 days (Entodinium and subfamily Diplodiniinae spp.), although individual concentrations were variable. [source]


    Metabolic and productive response to ruminal protein degradability in early lactation cows fed untreated or xylose-treated soybean meal-based diets

    JOURNAL OF ANIMAL PHYSIOLOGY AND NUTRITION, Issue 6 2009
    M. Jahani-Moghadam
    Summary Effects of different dietary rumen undegradable (RUP) to degradable (RDP) protein ratios on ruminal nutrient degradation, feed intake, blood metabolites and milk production were determined in early lactation cows. Four multiparous (43 ± 5 days in milk) and four primiparous (40 ± 6 days in milk) tie-stall-housed Holstein cows were used in a duplicated 4 × 4 Latin square design with four 21-day periods. Each period had 14-day of adaptation and 7-day of sampling. Diets contained on a dry matter (DM) basis, 23.3% alfalfa hay, 20% corn silage and 56.7% concentrate. Cows were first offered alfalfa hay at 7:00, 15:00 and 23:00 hours, and 30 min after each alfalfa hay delivery were offered a mixture of corn silage and concentrate. Treatments were diets with RUP:RDP ratios of (i) 5.2:11.6 (control), (ii) 6.1:10.6, (iii) 7.1:9.5 and (iv) 8.1:8.5, on a dietary DM% basis. Different RUP:RDP ratios were obtained by partial and total replacement of untreated soybean meal (SBM) with xylose-treated SBM (XSBM). In situ study using three rumen-cannulated non-lactating cows showed that DM and crude protein (CP) of SBM had greater rapidly degradable fractions. The potentially degradable fractions were degraded more slowly in XSBM. Treatment cows produced greater milk, protein, lactose, solids-non-fat and total solids than control cows. Increasing RUP:RDP reduced blood urea linearly. Feed costs dropped at RUP:RDP ratios of 6.1:10.6 and 7.1:9.5, but not at 8.1:8.5, compared with the 5.2:11.6 ratio. Intake of DM and CP, rumen pH, blood glucose, albumin and total protein, faecal and urine pH, changes in body weight and body condition score, and milk lactose and solids-non-fat percentages did not differ among treatments. Results provide evidence that increasing dietary RUP:RDP ratio from 5.2:11.6 to 7.1:9.5 optimizes nitrogen metabolism and milk production and reduces feed costs in early lactation cows. Reduced blood urea suggests reprodutive benefits. [source]


    Effect of Cadmium and Aluminum Intake on the Antioxidant Status and Lipid Peroxidation in Rat Tissues

    JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 4 2001
    Shohda A. El-Maraghy
    Abstract This work aimed to study the relationship between the accumulation of cadmium (Cd) or aluminum (Al) in certain tissues and the levels of lipid peroxides as well as tissue antioxidants. To carry out such investigations, CdCl2 was given to rats in two dose levels; 0.5 or 2.0 mg/kg i.p for 1 day or daily repeated doses for 2 weeks. Al was given as AlCl3 either in a single dose of 100 mg/kg or daily repeated doses of 20 mg/kg for 2 and 4 weeks. The measured parameters were tissue malondialdehyde (MDA, index of lipid peroxidation) and reduced glutathione (GSH) levels as well as the activities of glutathione peroxidase (GSH-PX), glutathione reductase (GSSG-R), and glucose-6-phosphate dehydrogenase (G-6-PDH) enzymes. Liver and kidney functions were assessed by measuring serum alanine aminotransferase (ALT) and alkaline phosphatase (ALP) activities as well as serum urea and creatinine concentrations. Cd and Al concentrations in the studied tissues were also measured. Results indicated that tissue Cd was significantly increased after administration of either Cd doses. After a single dose of 0.5 or 2.0 mg/kg CdCl2, the increase in tissue Cd levels were accompanied by an increase in MDA and a decrease in GSH levels. On the other hand, after repeated administration of Cd, tissue Cd accumulation was accompanied by increased hepatic and renal GSH levels with decrease in MDA content and a decrease in GSH-PX activity in liver. Liver function was affected at all dose regimens, whereas kidney function was affected only after 2 weeks administration of the higher dose. In Al treated rats, Al concentration was shown to be increased in liver much more than in brain. This was accompanied by a slight decrease in hepatic GSH level after 2 weeks and a decrease in GSH-PX activity after 4 weeks. Liver function was affected only after repeated injection of Al for 2 or 4 weeks. In general, Al administration exhibited safer pattern than Cd. © 2001 John Wiley & Sons, Inc. J Biochem Mol Toxicol 15:207,214, 2001 [source]


    Overweight Postmenopausal Women Lose Bone With Moderate Weight Reduction and 1 g/day Calcium Intake,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 3 2005
    Claudia S Riedt
    Abstract Overweight postmenopausal women may be more susceptible to bone loss with weight reduction than previously studied obese women. The influence of energy restriction and Ca intake on BMD was assessed in 66 individuals. Weight reduction resulted in bone loss at several sites in women consuming 1 g Ca/day and was mitigated with higher calcium intake at 1.7 g/day. Introduction: Bone loss is associated with weight loss in obese postmenopausal women and can be prevented with calcium (Ca) supplementation. However, because bone loss caused by weight loss may be greater in overweight than obese women, it is not clear whether Ca supplementation is also beneficial in overweight women. Materials and Methods: We assessed the influence of caloric restriction at two levels of Ca intake on BMD and BMC in 66 overweight postmenopausal women (age, 61 ± 6 years; body mass index, 27.0 ± 1.8 kg/m2). Subjects completed either a 6-month energy-restricted diet (WL, n = 47) and lost 9.3 ± 3.9 % weight or maintained weight (WM; 1 g Ca/day, n = 19). Participants in the WL group were randomly assigned to either normal (1 g/day; WL NL-Ca) or high (1.7 g/day; WL Hi-Ca) Ca intake. Regional BMD and BMC were measured at baseline and after 6 months. Results: During normal Ca intake, trochanter BMD and BMC and total spine BMD were decreased more in WL than WM women (p < 0.05). The WL NL-Ca group lost more trochanter BMD (,4.2 ± 4.1%) and BMC (,4.8 ± 7.1%) than the WL Hi-Ca group (,1.4 ± 5.6% and ,1.1 ± 8.1%, respectively; p < 0.05). There were no significant changes in BMD or BMC at the femoral neck in any group. Weight loss correlated with trochanter BMD loss (r = 0.687, p < 0.001) in the WL NL-Ca group. Conclusion: Despite an intake of 1 g Ca/day, bone loss occurred at some sites because of weight loss. Calcium intake of 1.7 g/day will minimize bone loss during weight loss in postmenopausal overweight women. [source]


    Safety of Polyethylene Terephthalate Food Containers Evaluated by HPLC, Migration Test, and Estimated Daily Intake

    JOURNAL OF FOOD SCIENCE, Issue 6 2008
    H.-J. Park
    ABSTRACT:, A comparative high-pressure liquid chromatography (HPLC) analysis of monomers, terephthalic acid (TPA), isophthalic acid (IPA), and dimethyl terephthalate (DMT) from polyethylene terephthalate (PET) food containers was conducted. Monomer linearities and sensitivities were calibrated between established and novel HPLC analyses. Safety of PET containers was evaluated with newly established detection methods for TPA, IPA, and DMT. Migration of the 3 monomers into food simulants (water, 4% acetic acid, 20% alcohol, and n-heptane) from 56 PET containers collected from open markets was monitored. Migrated monomers were not detected over 0.1 ppm of detection limit. The corresponding estimated daily intake was measured to confirm the safety of these publicly available PET containers and to permit comparison to the specific migration limit of the European Union. The estimated daily intake of 3 monomers migrating from PET was 0.0384 mg/kg each. This represented only 0.6% of the European Union's specific migration limit, confirming the safety of the examined containers. [source]


    Long-term Infusion of Brain-Derived Neurotrophic Factor Reduces Food Intake and Body Weight via a Corticotrophin-Releasing Hormone Pathway in the Paraventricular Nucleus of the Hypothalamus

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 9 2010
    M. Toriya
    Brain-derived neurotrophic factor (BDNF) has been implicated in learning, depression and energy metabolism. However, the neuronal mechanisms underlying the effects of BDNF on energy metabolism remain unclear. The present study aimed to elucidate the neuronal pathways by which BDNF controls feeding behaviour and energy balance. Using an osmotic mini-pump, BDNF or control artificial cerebrospinal fluid was infused i.c.v. at the lateral ventricle or into the paraventricular nucleus of the hypothalamus (PVN) for 12 days. Intracerebroventricular BDNF up-regulated mRNA expression of corticotrophin-releasing hormone (CRH) and urocortin in the PVN. TrkB, the receptor for BDNF, was expressed in the PVN neurones, including those containing CRH. Both i.c.v. and intra-PVN-administered BDNF decreased food intake and body weight. These effects of BDNF on food intake and body weight were counteracted by the co-administration of ,-helical-CRH, an antagonist for the CRH and urocortin receptors CRH-R1/R2, and partly attenuated by a selective antagonist for CRH-R2 but not CRH-R1. Intracerebroventricular BDNF also decreased the subcutaneous and visceral fat mass, adipocyte size and serum triglyceride levels, which were all attenuated by ,-helical-CRH. Furthermore, BDNF decreased the respiratory quotient and raised rectal temperature, which were counteracted by ,-helical-CRH. These results indicate that the CRH-urocortin-CRH-R2 pathway in the PVN and connected areas mediates the long-term effects of BDNF to depress feeding and promote lipolysis. [source]


    The Ghrelin/Obestatin Balance in the Physiological and Pathological Control of Growth Hormone Secretion, Body Composition and Food Intake

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 7 2010
    R. Hassouna
    Ghrelin and obestatin are two gastrointestinal peptides obtained by post-translational processing of a common precursor, preproghrelin. Ghrelin is an orexigenic and adipogenic peptide and a potent growth hormone secretagogue (GHS) modified by the enzyme ghrelin- O -acyl-transferase to bind and activate its receptor, the GHS-R. The ghrelin/GHS-R pathway is complex and the effects of ghrelin on GH secretion, adiposity and food intake appear to be relayed by distinct mechanisms involving different transduction signals and constitutive activity for the GH-R, different cofactors as modulators of endogenous ghrelin signalling and/or alternative ghrelin receptors. The discovery of obestatin in 2005 brought an additional level of complexity to this fascinating system. Obestatin was initially identified as an anorexigenic peptide and as the cognate ligand for GPR39, but its effect on food intake and its ability to activate GPR39 are still controversial. Although several teams failed to reproduce the anorexigenic actions of obestatin, this peptide has been shown to antagonise GH secretion and food intake induced by ghrelin and could be an interesting pharmacological tool to counteract the actions of ghrelin. Ghrelin and obestatin immunoreactivities are recovered in the blood with an ultradian pulsatility and their concentrations in plasma vary with the nutritional status of the body. It is still a matter of debate whether both hormones are regulated by independent mechanisms and whether obestatin is a physiologically relevant peptide. Nevertheless, a significant number of studies show that the ghrelin/obestatin ratio is modified in anorexia nervosa and obesity. This suggests that the ghrelin/obestatin balance could be essential to adapt the body's response to nutritional challenges. Although measuring ghrelin and obestatin in plasma is challenging because many forms of the peptides circulate, more sensitive and selective assays to detect the different preproghrelin-derived peptides are being developed and may be the key to obtaining a better understanding of their roles in different physiological and pathological conditions. [source]


    Divergent Regulation of Hypothalamic Neuropeptide Y and Agouti-Related Protein by Photoperiod in F344 rats With Differential Food Intake and Growth

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 7 2009
    A. W. Ross
    Hypothalamic genes involved in food intake and growth regulation were studied in F344 rats in response to photoperiod. Two sub-strains were identified: F344/NHsd (F344/N) and F344/NCrHsd (F344/NCr); sensitive and relatively insensitive to photoperiod respectively. In F344/N rats, marked, but opposite, changes in the genes for neuropeptide Y (NPY) (+97.5%) and agouti-related protein (AgRP) (,39.3%) expression in the arcuate nucleus were observed in response to short (8 : 16 h light/dark cycle, SD) relative to long (16 : 8 h light/dark cycle, LD) day photoperiods. Changes were associated with both reduced food intake and growth. Expression of the genes for cocaine and amphetamine-regulated transcript (CART) and pro-opiomelanocortin (POMC) in the arcuate nucleus was unchanged by photoperiod. POMC in the ependymal layer around the third ventricle was markedly inhibited by SD. Parallel decreases in the genes for growth hormone-releasing hormone (GHRH) and somatostatin (Somatostatin) mRNA in the arcuate nucleus and Somatostatin in the periventricular nucleus were observed in SD. Serum levels of insulin-like growth factor (IGF)-1 and insulin were lower in F344/N rats in SD, whereas neither leptin nor corticosterone levels were affected. By contrast, F344/NCr rats that show only minor food intake and growth rate changes showed minimal responses in these genes and hormones. Thus, NPY/AgRP neurones may be pivotal to the photoperiodic regulation of food intake and growth. Potentially, the SD increase in NPY expression may inhibit growth by decreasing GHRH and Somatostatin expression, whereas the decrease in AgRP expression probably leads to reduced food intake. The present study reveals an atypical and divergent regulation of NPY and AgRP, which may relate to their separate roles with respect to growth and food intake, respectively. [source]


    Adipose Tissue Hormones and the Regulation of Food Intake

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 6 2008
    B. A. Henry
    Over the past decade, adipose tissue has been shown to produce numerous factors that act as hormones. Many of these act on the brain to regulate energy balance via dual effects on food intake and energy expenditure. These include well-characterised hormones such as leptin, oestrogen and glucocorticoids and novel factors such as adiponectin and resistin. This review provides a perspective on the role of these factors as lipostats. [source]


    Gastrointestinal Regulation of Food Intake: General Aspects and Focus on Anandamide and Oleoylethanolamide

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 2008
    R. Capasso
    The gastrointestinal tract plays a pivotal role in the regulation of food intake and energy balance. Signals from the gastrointestinal tract generally function to limit ingestion in the interest of efficient digestion. These signals may be released into the bloodstream or may activate afferent neurones that carry information to the brain and its cognitive centres, which regulates food intake. The rate at which nutrients become systemically available is also influenced by gastrointestinal motility: a delay in gastric emptying may evoke a satiety effect. Recent evidence suggests that the endocannabinoid anandamide and the related acylethanolamide oleoylethanolamide are produced in the intestine and might regulate feeding behaviour by engaging sensory afferent neurones that converge information to specific areas of the brain. The intestinal levels of these acylethanolamides are inversely correlated to feeding, as food deprivation increases intestinal levels of anandamide (which acts in the gut as a ,hunger signal'), while it decreases the levels of oleoylethanolamide (which acts in the gut as a ,satiety signal'). Additionally, these acylethanolamides, whose gastric levels change in response to diet-induced obesity, alter gastrointestinal motility, which might contribute to their effect on food intake and nutrient absorption. [source]


    Isolation and Characterisation of Four cDNAs Encoding Neuromedin U (NMU) From the Brain and Gut of Goldfish, and the Inhibitory Effect of a Deduced NMU on Food Intake and Locomotor Activity

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 1 2008
    K. Maruyama
    In rodents, neuromedin U (NMU; U for its original effects examined in the uterus) is a multifunctional neuropeptide implicated in the regulation of the circulatory and digestive systems and energy homeostasis, especially appetite. However, there is no available information on the nature and physiological roles of NMU in fish. Therefore, we attempted to isolate and characterise transcripts encoding NMU from the brain and gut of the goldfish, and to examine the involvement of NMU in the regulation of feeding behaviour in this species. We identified four cDNAs encoding three NMU orthologs from the brain and gut. Putative peptides consisting of 21, 25 and 38 amino acid residues (NMU-21, NMU-25 and NMU-38) were deduced from their nucleotide sequences. Two mRNAs for NMU-25 were strongly expressed in the gut and weakly expressed in the brain and testis. By contrast, mRNA for NMU-21 was strongly expressed in the brain and weakly expressed in the peripheral tissues. Expression of mRNA for NMU-38 was weakly expressed only in the brain. Therefore, we examined the effect of feeding status on the expression of NMU-21 mRNA in the brain. Fasting for 7 days induced a significant decrease in the expression levels of NMU-21 mRNA in the brain. We also synthesised NMU-21 after deducing its C-terminal amide from the NMU-21 mRNA, and then investigated the effect of intracerebroventricular (i.c.v.) administration of NMU-21 on food intake and locomotor activity in the goldfish. NMU-21, injected i.c.v., suppressed food intake and locomotor activity in a dose-dependent manner. These results suggest that NMU orthologs exist in fish, and that the NMU-21 deduced from them can potently inhibit food intake and locomotor activity in goldfish. [source]


    Increased Caloric Intake on a Fat-Rich Diet: Role of Ovarian Steroids and Galanin in the Medial Preoptic and Paraventricular Nuclei and Anterior Pituitary of Female Rats

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 10 2007
    S. F. Leibowitz
    Previous studies in male rats have demonstrated that the orexigenic peptide galanin (GAL), in neurones of the anterior parvocellular region of the paraventricular nucleus (aPVN) projecting to the median eminence (ME), is stimulated by consumption of a high-fat diet and may have a role in the hyperphagia induced by fat. In addition to confirming this relationship in female rats and distinguishing the aPVN-ME from other hypothalamic areas, the present study identified two additional extra-hypothalamic sites where GAL is stimulated by dietary fat in females but not males. These sites were the medial preoptic nucleus (MPN), located immediately rostral to the aPVN, and the anterior pituitary (AP). The involvement of ovarian steroids, oestradiol (E2) and progesterone (PROG), in this phenomenon was suggested by an observed increase in circulating levels of these hormones and GAL in MPN and AP with fat consumption and an attenuation of this effect on GAL in ovariectomised (OVX) rats. Furthermore, in the same four areas affected by dietary fat, levels of GAL mRNA and peptide immunoreactivity were stimulated by E2 and further by PROG replacement in E2 -primed OVX rats and were higher in females compared to males. Because both GAL and PROG stimulate feeding, their increase on a fat-rich diet may have functional consequences in females, possibly contributing to the increased caloric intake induced by dietary fat. This is supported by the findings that PROG administration in E2 -primed OVX rats reverses the inhibitory effect of E2 on total caloric intake while increasing voluntary fat ingestion, and that female rats with higher GAL exhibit increased preference for fat compared to males. Thus, ovarian steroids may function together with GAL in a neurocircuit, involving the MPN, aPVN, ME and AP, which coordinate feeding behaviour with reproductive function to promote consumption of a fat-rich diet at times of increased energy demand. [source]


    Changes in Hypothalamic-Pituitary-Adrenal Function, Body Temperature, Body Weight and Food Intake with Repeated Social Stress Exposure in Rats

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 1 2006
    S. Bhatnagar
    Abstract These present studies aimed to compare changes in hypothalamic-pituitary-adrenal (HPA) activity and body temperature in response to acute social defeat, to repeated social stress and to novel restraint after repeated stress, as well as to assess effects on metabolic parameters by measuring body weight gain and food and water intake. We found that social defeat produced a marked increase in both adrenocorticotrophic hormone and corticosterone compared to placement in a novel cage. Similarly, body temperature was also increased during social defeat and during 30 min of recovery from defeat. We then examined the effects of 6 days of repeated social stress and observed minimal HPA responses to repeated social stress compared to control rats. These neuroendocrine responses were contrasted by robust increases in body temperature during stress and during recovery from stress during 6 days of repeated stress. However, in response to novel restraint, repeatedly stressed rats displayed facilitated body temperature responses compared to controls, similar to our previous findings with HPA activity. Food intake was increased during the light period during which defeat took place, but later intake during the dark period was not affected. Repeated stress decreased body weight gain in the dark period but food intake was increased overall during the 6 days of repeated stress in the light period. As a result, repeated stress increased cumulative food intake during the light period in the stressed rats but these relatively small increases in food intake were unable to prevent the diminished total weight gain in repeatedly stressed rats. Overall, the results demonstrate that, although acute social defeat has similar effects on temperature and HPA activity, repeated exposure to social stress has divergent effects on HPA activity compared to body temperature and that dampened weight gain produced by repeated social stress cannot be fully explained by changes in food intake. [source]


    Roles of Corticotropin-Releasing Factor, Neuropeptide Y and Corticosterone in the Regulation of Food Intake In Xenopus laevis

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 3 2004
    E. J. Crespi
    Abstract In mammals, hypothalamic control of food intake involves counterregulation of appetite by anorexigenic peptides such as corticotropin-releasing factor (CRF), and orexigenic peptides such as neuropeptide Y (NPY). Glucocorticoids also stimulate food intake by inhibiting CRF while facilitating NPY actions. To gain a better understanding of the diversity and evolution of neuroendocrine feeding controls in vertebrates, we analysed the effects of CRF, NPY and glucocorticoids on food intake in juvenile Xenopus laevis. We also analysed brain CRF and NPY mRNA content and plasma corticosterone concentrations in relation to nutritional state. Intracerebroventricular (i.c.v.) injection of ovine CRF suppressed food intake while CRF receptor antagonist ,helical CRF(9,41) significantly increased food intake relative to uninjected and placebo controls. By contrast, i.c.v. injection of frog NPY and short-term corticosterone treatment increased food intake. Semi-quantitative reverse transcription-polymerase chain reaction analyses showed that CRF and NPY mRNA fluctuated with food intake in the brain region containing the mid-posterior hypothalamus, pretectum, and optic tectum: CRF mRNA decreased 6 h after a meal and remained low through 31 days of food deprivation; NPY mRNA content also decreased 6 h after a meal, but increased to prefeeding levels by 24 h. Plasma corticosterone concentration increased 6 h after a meal, returned to prefeeding levels by 24 h, and did not change with prolonged food deprivation. This postprandial increase in plasma corticosterone may be related to the subsequent increase in plasma glucose and body water content that occurs 24 h postfeeding. Overall, our data support the conclusion that, similar to other vertebrates, CRF is anorexigenic while NPY is orexigenic in X. laevis, and CRF secretion modulates food intake in the absence of stress by exerting an inhibitory tone on appetite. Furthermore, the stress axis is activated in response to food intake, but in contrast to mammals and birds is not activated during periods of food deprivation. [source]


    Corticosterone Facilitates Saccharin Intake in Adrenalectomized Rats: Does Corticosterone Increase Stimulus Salience?

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 5 2000
    Bhatnagar1
    Unlike normal rats, adrenalectomized rats do not voluntarily drink sweet saccharin solutions. To test whether this is a function of corticosterone in the circulation, and if corticosterone also increases the impetus for drinking saccharin after a period of withdrawal, we performed the following experiments. Young male rats were sham adrenalectomized (sham) or adrenalectomized (ADX); the ADX rats were provided with subcutaneous pellets containing (percent replacement of corticosterone, %B) 0%B, 15%B, 30%B or 100%B. Sham and ADX rats were immediately provided with saline (0.5%) and saccharin (2 mM) bottles in their home cages. Saccharin was allowed for 4 days on, 3 days off, 4 days on, 3 days off and a final day on, over the 15 days experiment. The dose of corticosterone determined both how much saccharin was voluntarily drunk by the ADX rats and the degree of overshoot after days off. Corticosterone also determined energy balance of the groups of ADX rats. The 30%B pellets restored food intake, body weight gain, insulin and caloric efficiency to the normal levels observed in sham rats. White fat depot weights and uncoupling protein concentration in brown adipose tissue were restored to sham levels by 100%B, suggesting that these variables which depend on activity in the sympathetic nervous system require considerable glucocorticoid receptor occupancy. We conclude that corticosterone increases the willingness to ingest sweetened water in a unimodal, dose-related manner, while moderate doses of corticosterone restore energy balance. [source]


    The FDA Recommendations on Fish Intake During Pregnancy

    JOURNAL OF OBSTETRIC, GYNECOLOGIC & NEONATAL NURSING, Issue 6 2002
    Emily C. Evans MSN
    The U.S. Food and Drug Administration recommends that pregnant women, women of childbearing age, and young children avoid eating shark, swordfish, mackerel, and tilefish. These fish often harbor high levels of methylmercury, a potent human neurotoxin. Methylmercury readily crosses the placenta and has the potential to significantly damage the fetal nervous system. Health care providers are responsible for educating women about the hazards of methylmercury and the Food and Drug Administration recommendation. [source]


    Region-Specific Induction of FosB/,FosB by Voluntary Alcohol Intake: Effects of Naltrexone

    ALCOHOLISM, Issue 10 2010
    Jing Li
    Background:, ,FosB is the best characterized transcription factor induced by chronic stimulation. Although previous studies have demonstrated that chronic passive ethanol exposure alters ,FosB immunoreactivity (IR), the effect of chronic voluntary ethanol consumption on ,FosB remains unknown. Furthermore, although previous studies have demonstrated that the opioid antagonist naltrexone reduces alcohol consumption in clinical and preclinical settings, the effect of naltrexone on FosB/,FosB has not been explored. Here, we examined the effects of chronic voluntary ethanol intake and naltrexone on FosB/,FosB IR in striatal region and prefrontal cortex, and the effect of naltrexone on voluntary ethanol intake. Methods:, We utilized immunohistochemistry to define the changes in FosB/,FosB IR induced by chronic voluntary ethanol intake under a two-bottle intermittent access of 20% ethanol model and by systematic administration (intraperitoneal injection) of naltrexone in Sprague-Dawley rats. Results:, Chronic (15 drinking sessions in 35 days) voluntary ethanol intake robustly induces FosB/,FosB IR in nucleus accumbens core, dorsolateral striatum, and orbitofrontal cortex, but not in nucleus accumbens shell, dorsomedial striatum, and medial prefrontal cortex. Systemic administration of naltrexone for 6 days significantly reduced voluntary ethanol consumption and FosB/,FosB IR induced by chronic voluntary ethanol intake. Conclusion:, Our results suggest that chronic voluntary ethanol intake induces FosB/,FosB IR in a subregion-specific manner which involves the activation of endogenous opioid system. [source]


    Environmental Modulation of Alcohol Intake in Hamsters: Effects of Wheel Running and Constant Light Exposure

    ALCOHOLISM, Issue 9 2010
    Steven B. Hammer
    Background:, Alcohol abuse leads to marked disruptions of circadian rhythms, and these disturbances in themselves can increase the drive to drink. Circadian clock timing is regulated by light, as well as by nonphotic influences such as food, social interactions, and wheel running. We previously reported that alcohol markedly disrupts photic and nonphotic modes of circadian rhythm regulation in Syrian hamsters. As an extension of this work, we characterize the hedonic interrelationship between wheel running and ethanol (EtOH) intake and the effects of environmental circadian disruption (long-term exposure to constant light [LL]) on the drive to drink. Methods:, First, we tested the effect of wheel running on chronic free-choice consumption of a 20% (v/v) EtOH solution and water. Second, the effect of this alcohol drinking on wheel running in alcohol-naive animals was investigated. Third, we assessed the influence of LL, known to suppress locomotor activity and cause circadian rhythm disruption, on EtOH consumption and wheel-running behavior. Results:, Inhibitory effects of wheel running on EtOH intake and vice versa were observed. Exposure to LL, while not affecting EtOH intake, induced rhythm splitting in 75% of the animals. Notably, the splitting phenotype was associated with lower levels of EtOH consumption and preference prior to, and throughout, the period of LL exposure. Conclusions:, These results are evidence that exercise may offer an efficacious clinical approach to reducing EtOH intake. Also, predisposition for light-induced (or other) forms of circadian disruption may modulate the drive to drink. [source]


    Effect of Iron(III) Chitosan Intake on the Reduction of Serum Phosphorus in Rats

    JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 7 2000
    JOSEPH BAXTER
    Because of the widespread use of aluminium- and calcium-containing phosphate binders for the control of hyperphosphataemia in patients with end-stage renal failure, an iron(III) chitosan complex was synthesised and fed to rats to measure its effect on serum phosphorus and calcium, intestinal phosphate binding and phosphate absorption. Thirty-six Wistar rats were randomly selected and distributed into a baseline group (n = 6), a control group (n = 8 (days 0,15), n = 8 (days 16,30)) and a treatment group (n = 8 (days 0,15), n = 8 (days 16,30)). The control groups ingested AIN-76 diet mix with a 1% w/w fibre content; however, the treatment groups had the fibre content completely substituted with iron(III) chitosan. The mean weights of the treated rats were slightly lower from 15 days (not significant); but overall, rat growth was not stunted in the treatment groups. The serum phosphorus levels of the treated group (n = 8) were significantly reduced after 15 days (P = 0.004; control: 5.7 ± 0.9 mg dL,1; treatment: 4.4±0.5 mg dL,1; 95% CI of difference: 0.5,2.2) and 30 days (P = 0.002; control: 5.5 ± 0.9 mg dL,1; treatment = 4.1 ± 0.6 mg dL,1; 95% CI of difference: 0.6,2.3) as compared with the respective control group. The serum calcium-phosphorus product was 62.0 ± 12.1 mg2 dL,2 for the control and 45.1 ± 6.6 mg2 dL,2 for the treatment group after 30 days (P = 0.004). The serum iron concentration of the treatment group did not differ from the baseline value after 15 and 30 days, but the treatment group was significantly higher than the control group (P < 0.05) after 30 days. The faeces phosphorus levels (mg day,1) were higher (P < 0.01) and its iron content was much higher (P < 0.01) for the treated group. The urine phosphorus (mg kg,1) was not significantly reduced for the treated group, but the mean was consistently less. The kidney and liver weights of both groups were similar, but the phosphorus content of the kidney (mg (g kidney),1) was higher for the treated group after 30 days (P = 0.041; control, 4.2 ± 1.2 mg g,1 vs treatment, 5.6 ± 1.4 mg g,1. Because iron(III) chitosan had a high phosphorus-binding capacity of 308 (mg P) per gram of Fe3+ for both the in-vitro (pH 7.5) and in-vivo studies, which is greater than nearly all commonly used phosphate binders, and a small net phosphorus absorption difference of 3.7 mg day,1, it is an efficient phosphate binder for lowering serum phosphate levels without increasing serum calcium levels. [source]