Instantaneous

Distribution by Scientific Domains

Terms modified by Instantaneous

  • instantaneous frequency
  • instantaneous growth rate
  • instantaneous mortality rate
  • instantaneous power
  • instantaneous rate
  • instantaneous velocity

  • Selected Abstracts


    Turbulence in a three-dimensional wall-bounded shear flow

    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 8 2010
    A. Holstad
    Abstract A new turbulent flow with distinct three-dimensional characteristics has been designed in order to study the impact of mean-flow skewing on the turbulent coherent vortices and Reynolds-averaged statistics. The skewing of a unidirectional plane Couette flow was achieved by means of a spanwise pressure gradient. Direct numerical simulations of the statistically steady Couette,Poiseuille flow enabled in-depth explorations of the turbulence field in the skewed flow. The imposition of a modest spanwise gradient turned the mean flow about 8° away from the original Couette flow direction and this turning angle remained nearly the same over the entire cross section. Nevertheless, a substantial non-alignment between the turbulent shear stress angle and the mean velocity gradient angle was observed. The structure parameter turned out to slightly exceed that in the pure Couette flow, contrary to the observations made in some other three-dimensional shear flows. Coherent flow structures, which are known to be associated with the Reynolds shear stress in near-wall regions, were identified by the ,2 -criterion. Instantaneous and ensemble-averaged vortices resembled those found in the unidirectional Couette flow. In the skewed flow, however, the vortex structures were turned to align with the local mean-flow direction. The conventional symmetry between Case 1 and Case 2 vortices was broken due to the mean-flow three-dimensionality. The turning of the coherent vortices and the accompanying symmetry-breaking gave rise to secondary and tertiary turbulent shear stress components. By averaging the already ensemble-averaged shear stresses associated with Case 1 and Case 2 vortices in the homogeneous directions, a direct link between the educed near-wall structures and the Reynolds-averaged turbulent stresses was established. These observations provide evidence in support of the hypothesis that the structural model proposed for two-dimensional turbulent boundary layers remains valid also in flows with moderate mean three-dimensionality. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    Determination of bankfull discharge magnitude and frequency: comparison of methods on 16 gravel-bed river reaches

    EARTH SURFACE PROCESSES AND LANDFORMS, Issue 11 2006
    O. Navratil
    Abstract Bankfull discharge is identified as an important parameter for studying river morphology, sediment motion, flood dynamics and their ecological impacts. In practice, the determination of this discharge and its hydrological characteristics is not easy, and a choice has to be made between several existing methods. To evaluate the impact of the choice of methods, five bankfull elevation definitions and four hydrological characterizations (determination of duration and frequency of exceedance applied to instantaneous or mean daily data) were compared on 16 gravel-bed river reaches located in France (the catchment sizes vary from 10 km2 to 1700 km2). The consistency of bankfull discharge estimated at reach scale and the hydraulic significance of the five elevation definitions were examined. The morphological definitions (Bank Inflection, Top of Bank) were found more relevant than the definitions based on a geometric criterion. The duration of exceedance was preferred to recurrence intervals (partial duration series approach) because it is not limited by the independency of flood events, especially for low discharges like those associated with the Bank Inflection definition. On average, the impacts of the choice of methods were very important for the bankfull discharge magnitude (factor of 1·6 between Bank Inflection and Top of Bank) and duration of exceedance or frequency (respectively a factor 1·8 and 1·9 between mean daily and instantaneous discharge data). The choice of one combination of methods rather than another can significantly modify the conclusions of a comparative analysis in terms of bankfull discharge magnitude and its hydrological characteristics, so that one must be cautious when comparing results from different studies that use different methods. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    Defining the moment of erosion: the principle of thermal consonance timing

    EARTH SURFACE PROCESSES AND LANDFORMS, Issue 13 2005
    D. M. LawlerArticle first published online: 9 DEC 200
    Abstract Geomorphological process research demands quantitative information on erosion and deposition event timing and magnitude, in relation to fluctuations in the suspected driving forces. This paper establishes a new measurement principle , thermal consonance timing (TCT) , which delivers clearer, more continuous and quantitative information on erosion and deposition event magnitude, timing and frequency, to assist understanding of the controlling mechanisms. TCT is based on monitoring the switch from characteristically strong temperature gradients in sediment, to weaker gradients in air or water, which reveals the moment of erosion. The paper (1) derives the TCT principle from soil micrometeorological theory; (2) illustrates initial concept operationalization for field and laboratory use; (3) presents experimental data for simple soil erosion simulations; and (4) discusses initial application of TCT and perifluvial micrometeorology principles in the delivery of timing solutions for two bank erosion events on the River Wharfe, UK, in relation to the hydrograph. River bank thermal regimes respond, as soil temperature and energy balance theory predicts, with strong horizontal thermal gradients (often >1 K cm,1 over 6·8 cm). TCT fixed the timing of two erosion events, the first during inundation, the second 19 h after the discharge peak and 13 h after re-emergence from the flow. This provides rare confirmation of delayed bank retreat, quantifies the time-lag involved, and suggests mass failure processes rather than fluid entrainment. Erosion events can be virtually instantaneous, implying ,catastrophic retreat' rather than ,progressive entrainment'. Considerable potential exists to employ TCT approaches for: validating process models in several geomorphological contexts; assisting process identification and improving discrimination of competing hypotheses of process dominance through high-resolution, simultaneous analysis of erosion and deposition events and driving forces; defining shifting erodibility and erosion thresholds; refining dynamic linkages in event-based sediment budget investigations; and deriving closer approximations to ,true' erosion and deposition rates, especially in self-concealing scour-and-fill systems. Copyright © 2005 John Wiley & Sons, Ltd. [source]


    When density dependence is not instantaneous: theoretical developments and management implications

    ECOLOGY LETTERS, Issue 2 2008
    Irja I. Ratikainen
    Abstract Most organisms live in changing environments or do not use the same resources at different stages of their lives or in different seasons. As a result, density dependence will affect populations differently at different times. Such sequential density dependence generates markedly different population responses compared to the unrealistic assumption that all events occur simultaneously. Various field studies have also shown that the conditions that individuals experience during one period can influence success and per capita vital rates during the following period. These carry-over effects further complicate any general principles and increase the diversity of possible population dynamics. In this review, we describe how studies of sequential density dependence have diverged in directions that are both taxon-specific and have non-overlapping terminology, despite very similar underlying problems. By exploring and highlighting these similarities, we aim to improve communication between fields, clarify common misunderstandings, and provide a framework for improving conservation and management practices, including sustainable harvesting theory. [source]


    Evaluation of factors influencing membrane performance

    ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, Issue 4 2005
    Weihua Peng
    Abstract Three commercial water treatment membranes, TFC-S (Koch membranes, San Diego, CA), ESPA1, and NTR7450 (Hydranautics, San Diego, CA), were tested under various physical and chemical conditions to investigate their fouling behaviors. It was found that TFC-S always displayed the greatest rate of flux decline, ESPA1 displayed a mild trend in flux decline, and NTR7450 presented a nearly stable flux. Multivariable regression models showed that the flux decline rates for TFC-S and ESPA1 were controlled by the initial permeate flux, whereas their initial (that is, instantaneous) foulings were controlled by the interaction between permeate drag and electrostatic repulsions. Feed bacteria concentration also contributed to the initial fouling of ESPA1 as a result of cell deposition on the membrane surface. NTR7450 showed an initial decline in flux followed by a steady flux, and its initial fouling was significantly affected by feed water total organic carbon (TOC) arising from the initial accumulation of colloidal organic particles on the surface. © 2005 American Institute of Chemical Engineers Environ Prog, 2005 [source]


    Age-associated changes in viscoelastic properties of the bovine temporomandibular joint disc

    EUROPEAN JOURNAL OF ORAL SCIENCES, Issue 1 2006
    Eiji Tanaka
    To test the hypothesis that compressive properties of the temporomandibular joint (TMJ) disc change with age, we investigated its viscoelastic properties and stress-relaxation behavior under compression. Compressive stress-relaxation tests were performed in different regions of bovine discs of various ages. For each disc, specimens were derived from three different regions (anterior, central, and posterior). For four strain levels (5, 10, 15, and 20%), a stress-relaxation test was conducted over a 5-min period. Values of the instantaneous modulus, E0, appeared to be larger in the anterior than in the posterior region of the disc, irrespective of age. The E0 value increased with age, especially in the central region. Values of the relaxed modulus, ER, also increased significantly with age. There were no regional differences in values of the relaxed modulus. Under stress-relaxation, the relaxation time became longer with age, especially in the posterior region. The results suggest that the compressive properties, instantaneous and relaxed moduli, increase with age, while the relaxation time becomes longer. This implies that the TMJ disc becomes harder with age. Furthermore, the compressive properties of the TMJ disc are region-specific. As a result of the harder disc, it is likely that the TMJ becomes more vulnerable to secondary damage, such as fracture and tissue degradation. [source]


    Dynamic compressive properties of porcine temporomandibular joint disc

    EUROPEAN JOURNAL OF ORAL SCIENCES, Issue 5 2003
    Eiji Tanaka
    This study aimed to evaluate the effect of the strain frequency and amplitude on the compressive properties of the porcine temporomandibular joint disc and to determine the time-dependent changes associated with energy dissipation. Seven discs were used for compressive cycle tests, including various frequencies and magnitudes of compressive strain. Each experiment consisted of 25 cycles of loading and unloading. Hysteresis and the instantaneous and steady moduli were calculated. All specimens showed a clear hysteresis and repeatable stress,strain relationships within 19 cycles. The hysteresis at the initial cycle ranged between 35% and 62%, and gradually decreased in subsequent cycles. The instantaneous modulus became larger when the strain frequency and the strain amplitude increased. The steady modulus was approximately one-third of the instantaneous one. It was concluded that the disc has an energy-dissipating function during dynamic compression. [source]


    THE HISTORICAL BIOGEOGRAPHY OF TWO CARIBBEAN BUTTERFLIES (LEPIDOPTERA: HELICONIIDAE) AS INFERRED FROM GENETIC VARIATION AT MULTIPLE LOCI

    EVOLUTION, Issue 3 2002
    Neil Davies
    Abstract Mitochondrial DNA and allozyme variation was examined in populations of two Neotropical butterflies, Heliconius charithonia and Dryas iulia. On the mainland, both species showed evidence of considerable gene flow over huge distances. The island populations, however, revealed significant genetic divergence across some, but not all, ocean passages. Despite the phylogenetic relatedness and broadly similar ecologies of these two butterflies, their intraspecific biogeography clearly differed. Phylogenetic analyses of mitochondrial DNA sequences revealed that populations of D. iulia north of St. Vincent are monophyletic and were probably derived from South America. By contrast, the Jamaican subspecies of H. charithonia rendered West Indian H. charithonia polyphyletic with respect to the mainland populations; thus, H. charithonia seems to have colonized the Greater Antilles on at least two separate occasions from Central America. Colonization velocity does not correlate with subsequent levels of gene flow in either species. Even where range expansion seems to have been instantaneous on a geological timescale, significant allele frequency differences at allozyme loci demonstrate that gene flow is severely curtailed across narrow ocean passages. Stochastic extinction, rapid (re)colonization, but low gene flow probably explain why, in the same species, some islands support genetically distinct and nonexpanding populations, while nearby a single lineage is distributed across several islands. Despite the differences, some common biogeographic patterns were evident between these butterflies and other West Indian taxa; such congruence suggests that intraspecific evolution in the West Indies has been somewhat constrained by earth history events, such as changes in sea level. [source]


    Interest Rate Volatility Prior to Monetary Union under Alternative Pre-Switch Regimes

    GERMAN ECONOMIC REVIEW, Issue 4 2003
    Bernd Wilfling
    Interest rate volatility; term structure; exchange rate arrangements; intervention policy; stochastic processes Abstract. The volatility of interest rates is relevant for many financial applications. Under realistic assumptions the term structure of interest rate differentials provides an important predictor of the term structure of interest rates. This paper derives the term structure of differentials in a situation in which two open economies plan to enter a monetary union in the future. Two systems of floating exchange rates prior to the union are considered, namely a free-float and a managed-float regime. The volatility processes of arbitrary-term differentials under the respective pre-switch arrangements are compared. The paper elaborates the singularity of extremely short-term (i.e. instantaneous) interest rates under extensive leaning-against-the-wind interventions and discusses policy issues. [source]


    Determination of Transverse Dispersion Coefficients from Reactive Plume Lengths

    GROUND WATER, Issue 2 2006
    Olaf A. Cirpka
    With most existing methods, transverse dispersion coefficients are difficult to determine. We present a new, simple, and robust approach based on steady-state transport of a reacting agent, introduced over a certain height into the porous medium of interest. The agent reacts with compounds in the ambient water. In our application, we use an alkaline solution injected into acidic ambient water. Threshold values of pH are visualized by adding standard pH indicators. Since aqueous-phase acid-base reactions can be considered practically instantaneous and the only process leading to mixing of the reactants is transverse dispersion, the length of the plume is controlled by the ratio of transverse dispersion to advection. We use existing closed-form expressions for multidimensional steady-state transport of conservative compounds in order to evaluate the concentration distributions of the reacting compounds. Based on these results, we derive an easy-to-use expression for the length of the reactive plume; it is proportional to the injection height squared, times the velocity, and inversely proportional to the transverse dispersion coefficient. Solving this expression for the transverse dispersion coefficient, we can estimate its value from the length of the alkaline plume. We apply the method to two experimental setups of different dimension. The computed transverse dispersion coefficients are rather small. We conclude that at slow but realistic ground water velocities, the contribution of effective molecular diffusion to transverse dispersion cannot be neglected. This results in plume lengths that increase with increasing velocity. [source]


    Seasonal snowpack dynamics and runoff in a cool temperate forest: lysimeter experiment in Niigata, Japan

    HYDROLOGICAL PROCESSES, Issue 20 2005
    Andrew C. Whitaker
    Abstract Seasonal snowpack dynamics are described through field measurements under contrasting canopy conditions for a mountainous catchment in the Japan Sea region. Microclimatic data, snow accumulation, albedo and lysimeter runoff are given through the complete winter season 2002,03 in (1) a mature cedar stand, (2) a larch stand, and (3) a regenerating cedar stand or opening. The accumulation and melt of seasonal snowpack strongly influences streamflow runoff during December to May, including winter baseflow, mid-winter melt, rain on snow, and diurnal peaks driven by radiation melt in spring. Lysimeter runoff at all sites is characterized by constant ground melt of 0·8,1·0 mm day,1. Rapid response to mid-winter melt or rainfall shows that the snowpack remains in a ripe or near-ripe condition throughout the snow-cover season. Hourly and daily lysimeter discharge was greatest during rain on snow (e.g. 7 mm h,1 and 53 mm day,1 on 17 December) with the majority of runoff due to rainfall passing through the snowpack as opposed to snowmelt. For both rain-on-snow and radiation melt events lysimeter discharge was generally greatest at the open site, although there were exceptions such as during interception melt events. During radiation melt instantaneous discharge was up to 4·0 times greater in the opening compared with the mature cedar, and 48 h discharge was up to 2·5 times greater. Perhaps characteristic of maritime climates, forest interception melt is shown to be important in addition to sublimation in reducing snow accumulation beneath dense canopies. While sublimation represents a loss from the catchment water balance, interception melt percolates through the snowpack and contributes to soil moisture during the winter season. Strong differences in microclimate and snowpack albedo persisted between cedar, larch and open sites, and it is suggested further work is needed to account for this in hydrological simulation models. Copyright © 2005 John Wiley & Sons, Ltd. [source]


    Numerical finite element formulation of the Schapery non-linear viscoelastic material model

    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 1 2004
    Rami M. Haj-Ali
    Abstract This study presents a numerical integration method for the non-linear viscoelastic behaviour of isotropic materials and structures. The Schapery's three-dimensional (3D) non-linear viscoelastic material model is integrated within a displacement-based finite element (FE) environment. The deviatoric and volumetric responses are decoupled and the strain vector is decomposed into instantaneous and hereditary parts. The hereditary strains are updated at the end of each time increment using a recursive formulation. The constitutive equations are expressed in an incremental form for each time step, assuming a constant incremental strain rate. A new iterative procedure with predictor,corrector type steps is combined with the recursive integration method. A general polynomial form for the parameters of the non-linear Schapery model is proposed. The consistent algorithmic tangent stiffness matrix is realized and used to enhance convergence and help achieve a correct convergent state. Verifications of the proposed numerical formulation are performed and compared with a previous work using experimental data for a glassy amorphous polymer PMMA. Copyright © 2003 John Wiley & Sons, Ltd. [source]


    Effects of construction noise on behaviour of and exhibit use by Snow leopards Uncia uncia at Basel zoo

    INTERNATIONAL ZOO YEARBOOK, Issue 1 2008
    C. E. SULSER
    Noise caused by human activities can cause stress in animals. We examined whether noise from construction sites affects the behaviour of and exhibit use by three Snow leopards Uncia uncia at Basel zoo. The behaviour and location of the animals were recorded at 1 minute intervals, using the instantaneous scan sampling method over a period of 216 hours (104 hours on noisy days and 112 hours on quiet days). The animals differed individually in their responses to the construction noise. On noisy days, the Snow leopards generally spent less time in locomotion and more time resting, but even on quiet days, resting was the predominant behaviour performed. Under noisy conditions, they increased social resting and decreased resting alone. Walking and social walking were also reduced on noisy days. Furthermore, the Snow leopards spent considerably more time in the remote off-exhibit enclosure under noisy conditions. Independent of background noise, they stayed more than half of the time in the caves and the forecourts of the outdoor enclosure. On quiet days, the Snow leopards used more sectors of their exhibit than on noisy days. The results indicate that the Snow leopards responded to construction noise by increasing the amount of time spent resting and by withdrawing to the remote parts of their exhibit. [source]


    A Novel In situ Recognition of Misalignment between Mating Parts in Robotic Assembly Processes

    JOURNAL OF FIELD ROBOTICS (FORMERLY JOURNAL OF ROBOTIC SYSTEMS), Issue 11 2002
    W. S. Kim
    A visual sensing system is utilized mainly to estimate the misalignment between mating parts, the recognition of which is the integral part of any assembly process. The recognition, however, requires the information on the state of the misalignment that includes the shapes of parts in mating motion and instantaneous relative position and angular orientation between mating parts. Normally, this information has been given in advance by an operator to facilitate assembly action. Therefore, in order to recognize the assembly state in sequence without intervention of an operator, it requires an effective sensing system and algorithm capable of working well even without a priori information on part shape and location. In this paper, we propose a novel system that can assemble parts under such uncertain environments. The system, composed of an omnidirectional sensing module and a recognition module, is capable of acquiring information on the sequential state of parts assembly motion from which instantaneous, relative location and orientation between the mating parts can be determined. Since the system does not utilize a priori knowledge on the shape of mating parts, it greatly reduces the degree of human intervention, thus increasing autonomy and flexibility. To evaluate the performance of the proposed system, a series of assembly experiments are performed. The results show that the proposed system, indeed, demonstrates effectiveness of vision guided assembly action. © 2002 Wiley Periodicals, Inc. [source]


    A STATISTICAL ANALYSIS OF CREAMING VARIABLES IMPACTING PROCESS CHEESE MELT QUALITY

    JOURNAL OF FOOD QUALITY, Issue 4 2003
    T.A. GLENN III
    To simulate commercial processing, a pilot scale 10-gallon (0.04m3), dual ribbon blender was equipped with a thermal control system and a 0.75 hp (559.27 W) electrical motor. An experimental design consisted of three temperatures (75, 80, 85C), three mixing rates (50, 100,150 RPM), and six durations (1, 5, 10, 15, 25, 35 min). Quantified process variables included: process strain and thermal history, and total, instantaneous, and change in mechanical energy. The Schreiber melt test was used to examine the relationship between the processing parameters and melt performance. A statistical analysis revealed significant parameter estimates (P < 0.0001) for each quantified variable in a general linear model. The process cheese industry will gain insight into controlled manufacturing conditions to deliver desired melt functionality. [source]


    Characterization of granular flow of wet solids in a bladed mixer

    AICHE JOURNAL, Issue 8 2006
    Azzeddine Lekhal
    Abstract In this study, we measure instantaneous, average, and fluctuating velocity fields at exposed surfaces for dry and wet grains in a vertical cylindrical mixer, agitated by four pitched blades. When the material is dry, the free surface of the granular bed deforms, rising where the blades are present, and falling between blade passes. Although average velocities are predominantly azimuthal, instantaneous velocities tracked in time reveal three-dimensional particle circulations, including significant periods of particle motion in the opposite direction to that of the blades, indicative of bed penetration. When moisture is added to the solid particles, the flow dynamics change from a regime dominated by the motion of individual grains to a regime controlled by the motion of small clumps that form as a result of the cohesive forces. This transition is characterized by a reduced particle,particle collision frequency and exhibits a sharp decrease in the granular temperature at the free surface. This transition is also characterized by an increase in bed porosity, which is attributed to increased cohesiveness arising from liquid bridges. A Fourier transform analysis conducted on the tangential component of the velocities (dominant flow) shows that a group of high frequencies exceeding the blade rotation frequency become significant with added moisture. These are characteristics of the large number of wet agglomerates flowing between successive blade passes. © 2006 American Institute of Chemical Engineers AIChE J, 2006 [source]


    Uptake and Dispersion of Metformin in the Isolated Perfused Rat Liver

    JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 8 2000
    CHEN-HSI CHOU
    Although metformin is a widely used oral antihyperglycaemic, the exact mechanisms of its cellular uptake and action remain obscure. In this study the hepatic extraction and disposition kinetics of metformin were investigated by use of an isolated in-situ rat liver preparation. The liver was perfused in single-pass mode with protein-free Krebs bicarbonate medium at a flow rate of 20mLmin,1. During constant infusion with 1 mgL,1 metformin hydrochloride the hepatic uptake of metformin approached equilibrium within 10 min. The steady-state availability, F, determined from the ratio of outflow concentration to input concentration, was 0.99±0.02 (mean±s.d., n=4). The outflow profile of metformin resulting from a bolus injection of 25 ,g into the portal vein, had a sharp peak then a slower declining terminal phase. The mean transit time (MTT; 49.5±14.5, n = 6) and normalized variance (CV2; 4.13±0.05) of the hepatic transit times of metformin were estimated by numerical integration from the statistical moments of the outflow data. The volume of distribution of metformin in the liver (1.58±0.28 mL (g liver),1) was estimated from its MTT. The volume of distribution is greater than the water space of liver, indicating that metformin enters the hepatic aqueous space and becomes distributed among cellular components. The magnitude of CV2 for metformin is greater than for the vascular marker sucrose, suggesting that distribution of metformin into hepatic tissue is not instantaneous. In conclusion, hepatic uptake of metformin is rate-limited by a permeability barrier. Although metformin is accumulated in the liver, the organ does not extract it. [source]


    Environmental Factors Influencing the Dispersal of Venturia inaequalis Ascospores in the Orchard Air

    JOURNAL OF PHYTOPATHOLOGY, Issue 1 2001
    V. Rossi
    A 6-year study was carried out in an apple-growing region of North Italy by trapping airborne ascospores of Venturia inaequalis with a volumetric spore trap operated continuously during the ascospore season, with the aim of better defining the weather conditions that allow ascospores both to discharge and to disperse into the orchard air. A total of more than 60 ascospore trapping events occurred. Rain events were the only occurrences allowing ascospores to become airborne (a rain event is a period with measurable rainfall ,0.2 mm/h , lasting one to several hours, uninterrupted or interrupted by a maximum of two dry hours); on the contrary, dew was always insufficient to allow ascospores to disperse into the air at a measurable rate, in the absence of rain. In some cases, rain events did not cause ascospore dispersal; this occurred when: (i) rain fell within 4,5 h after the beginning of a previous ascospore trapping; (ii) rain fell at night but the leaf litter dried rapidly; (iii) nightly rainfalls were followed by heavy dew deposition that persisted some hours after sunrise. Daytime rain events caused the instantaneous discharge and dispersal of mature ascospores so that they became airborne immediately; for night-time rainfall there was a delay, so that ascospores became airborne during the first 2 h after sunrise. This delay did not always occur, and consequently the ascospore trapping began in the dark, when: (i) the cumulative proportion of ascospores already trapped was greater than 80% of the total season's ascospores; (ii) more than one-third of the total season's ascospores was mature inside pseudothecia and ready to be discharged. Einfluß von Umweltfaktoren auf die Verteilung der Ascosporen von Venturia inaequalis in der Luft von Apfelanlagen In einem norditalienischen Apfelanbaugebiet wurde eine 6-jährige Untersuchung durchgeführt, um die Wetterverhältnisse genauer zu definieren, bei denen die Ascosporen von Venturia inaequalis entlassen werden und sich in der Luft der Apfelanlagen verteilen. Dazu wurden die luftbürtigen Ascosporen mit einer volumetrischen Sporenfalle gefangen, die während der Zeit des Ascosporenfluges kontinuierlich in Betrieb war. Insgesamt ereigneten sich mehr als 60 Ascosporenfangereignisse. Die Ascosporen konnten nur durch Regenereignisse in die Luft gelangen. (Ein Regenereignis ist ein Zeitraum mit meßbarem Regenfall , (0,2 mm pro h ,,der 1 bis mehrere Stunden dauert und nicht oder von max. 2 Stunden Trockenheit unterbrochen wird.) Tau reichte dagegen niemals aus, um Ascosporen in meßbaren Mengen in die Luft gelangen zu lassen, wenn kein Regen fiel. In einigen Fällen konnten auch Regenereignisse keine Ascosporenverteilung hervorrufen: (1) wenn Regen innerhalb von 4,5 Stunden nach dem Beginn eines vorausgehenden Ascosporenfanges fiel; (2) wenn Regen nachts fiel, doch die Blattschicht auf dem Boden rasch abtrocknete; (3) wenn nächtliche Regenfälle von starker Taubildung gefolgt waren und der Tau mehrere Stunden nach Sonnenaufgang noch vorhanden war. Regenereignisse während des Tages führten zu einer sofortigen Entlassung und Verteilung reifer Ascosporen, die also sofort in die Luft gelangten. Bei nächtlichen Regenfällen kam es dagegen zu einer Verzögerung, so daß Ascosporen in den ersten 2 Stunden nach Sonnenaufgang in die Luft gelangten. Diese Verzögerung trat nicht ein, und folglich begann der Ascosporenfang im Dunkeln, wenn: (1) der kumulative Anteil bereits gefangener Ascosporen die Marke von 80% der gesamten Ascosporen der Flugzeit überstieg; (2) mehr als ein Drittel der gesamten Ascosporen der Flugzeit in den Pseudothecien reif und zur Entlassung bereit war. [source]


    Preparation of gradient copolymers via ATRP using a simultaneous reverse and normal initiation process.

    JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 16 2005

    Abstract Spontaneous gradient copolymers were prepared in both bulk and miniemulsion systems via Atom Transfer Radical Polymerization (ATRP) utilizing a Simultaneous Reverse and Normal Initiation (SR & NI) process. Both instantaneous and cumulative compositions were used to characterize the gradient copolymers. The gradient copolymers were obtained with an array of gradient compositions ranging from a subtle to strong variation in monomer distribution along the polymer backbones, depending on the ratio of comonomers initially added to the copolymerization system. The compositions of the gradient copolymer produced in miniemulsion systems were similar to those generated in bulk. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3616,3622, 2005 [source]


    Kinetic behavior of ethylene/1-hexene copolymerization in slurry and solution reactors

    JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 11 2005
    Long Wu
    Abstract The copolymerization of ethylene and 1-hexene over a spherical polymer/MgCl2 -supported TiCl4 catalyst was studied as a function of the polymerization temperature from 40 to 100 °C in a slurry reactor and from 120 to 200 °C in a solution reactor with triethylaluminum (TEA) as a cocatalyst (1.0,6.8 mmol). The activities increased from 40 to 80 °C and then declined monotonically with increases in the temperature during the slurry and solution polymerizations. The kinetic behavior in the slurry and solution operations was described by the same rate expression. The modeling results indicated that the catalyst had at least two different types of catalytic sites; one site was responsible for the acceleration,decay nature of the activity profiles, whereas the second site resulted in long-term activity. The apparent activation energy for site activation in the slurry operation was 69.9 kJ/mol; no activation energies for site activation could be estimated for the solution operation because the activation process was essentially instantaneous at the higher temperatures. The activation energies for deactivation were 100.3 kJ/mol for the slurry operation and 31.2 kJ/mol for the solution operation. The responses to TEA were similar for the slurry and solution operations; the rates increased with increasing amounts of TEA between 1.0 and 3.4 mmol and then decreased with larger amounts of TEA. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2248,2257, 2005 [source]


    PANEL PERFORMANCE AND NUMBER OF EVALUATIONS IN A DESCRIPTIVE SENSORY STUDY

    JOURNAL OF SENSORY STUDIES, Issue 4 2004
    JÉRÔME PAGÈS
    ABSTRACT The assessor performance is a key point in a sensory evaluation. In particular, at the end of a session, a decrease of the performance can be feared. We propose to analyze this performance with various criteria: usual ones as the main product effect or the error variance; a new one measuring the perceived products variability. The performance can then be studied all along the session from two points of view: in taking into account the only products tested at a given instant (named instantaneous); in taking into account all the products tested up to a given instant (named cumulative). In the presented example, in spite of the large number of products successively tested by each assessor, the instantaneous performance of the panel shows no significant deterioration. Furthermore, when the number of products tested by each assessor increases, more significant product effects can be obtained thanks to the accumulation of the amount of data. This shows that the number of products that can be reasonably studied by one assessor during one session is generally underestimated. [source]


    In vitro gas production profile and the formation of end products from non- washable, insoluble washable and soluble washable fractions in some concentrate ingredients

    JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 7 2007
    Arash Azarfar
    Abstract A procedure that mimics washing in the in situ incubation technique, combined with an in vitro gas and volatile fatty acids (VFAs) production technique, was used to verify the assumption that rumen degradation behaviour of material washed out of nylon bags is instantaneous and complete. In a 6 × 4 factorial arrangement of treatments with three replicates, fractions of maize, barley, milo, yellow peas, lupins (a mixture of white and spotted lupins) and round-seeded brown faba beans were subjected to an in vitro incubation technique. Fractions were whole (WHO), non-washable (NWF), insoluble washable (ISWF) and soluble washable (SWF). In a manually operated in vitro fermentation system, another 24 samples of the same substrates were fermented for VFA and ammonia analysis. Except in lupins, ISWF in the concentrate ingredients was very rich in starch. SWF was relatively rich in ash, crude protein, soluble sugars, and a residual unknown fraction but contained only a negligible quantity of starch. Thus, the fermentation characteristics of ISWF were more like WHO and NWF than SWF. Total gas production of SWF was considerably lower than the other fractions. A very rapidly degradable fraction was seen in the first phase of degradation of SWF. The pattern of fermentation end-product formation for SWF differed from that of the other fractions. Copyright © 2007 Society of Chemical Industry [source]


    The latest Ordovician Hirnantia Fauna (Brachiopoda) in time and space

    LETHAIA, Issue 3 2002
    RONG JIA-YU
    The diachronous temporal and spatial distribution of the Hirnantia brachiopod fauna and the complicated pattern of terminal Ordovician events are documented through biostratigraphical analysis of the Ordovician-Silurian boundary strata in S China, Sibumasu, Xizang and elsewhere. The duration of these events (longer than the half Myr derived from isotopic excursions) indicates that they were not abrupt and instantaneous. The presence of some core taxa of the Hirnantia fauna in the upper P. pacificus Biozone (known from their earliest occurrence in China) signals the start of increased water ventilation due to the invasion of cool water across the Yangtze Basin. Low- and higher-diversity Hirnantia faunas related to onshore, shallow-water and to offshore, deeper-water environments, respectively, developed first in the basal and upper N. extraordinarius-N. ojsuensis Biozone. Disappearance of most of the fauna in the early N. persculptus Biozone suggests that the glacial maximum started to decline. The presence of the Hirnantia fauna in the upper N. persculptus to the lower P. acuminatus biozones indicates the continuation of cool water environments in some places. The diachronous disappearance of deteriorating environments (earlier in later Hirnantian and finally in the early Rhuddanian) is associated with geographical heterogeneity. Occurrences of atrypids, pentamerids and spiriferids along with key elements of the Hirnantia fauna in N Guizhou provide a link between the Late Ordovician radiation and Early Silurian recovery of these major brachiopod groups. [source]


    The Term Structure of Simple Forward Rates with Jump Risk

    MATHEMATICAL FINANCE, Issue 3 2003
    Paul Glasserman
    This paper characterizes the arbitrage-free dynamics of interest rates, in the presence of both jumps and diffusion, when the term structure is modeled through simple forward rates (i.e., through discretely compounded forward rates evolving continuously in time) or forward swap rates. Whereas instantaneous continuously compounded rates form the basis of most traditional interest rate models, simply compounded rates and their parameters are more directly observable in practice and are the basis of recent research on "market models." We consider very general types of jump processes, modeled through marked point processes, allowing randomness in jump sizes and dependence between jump sizes, jump times, and interest rates. We make explicit how jump and diffusion risk premia enter into the dynamics of simple forward rates. We also formulate reasonably tractable subclasses of models and provide pricing formulas for some derivative securities, including interest rate caps and options on swaps. Through these formulas, we illustrate the effect of jumps on implied volatilities in interest rate derivatives. [source]


    Instantaneous control for traffic flow

    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, Issue 2 2007
    M. Herty
    Abstract The solution methods for optimal control problems with coupled partial differential equations as constraints are computationally costly and memory intensive; in particular for problems stated on networks, this prevents the methods from being relevant. We present instantaneous control problems for the optimization of traffic flow problems on road networks. We derive the optimality conditions, investigate the relation to the full optimal control problem and prove that certain properties of the optimal control problem carry over to the instantaneous one. We propose a solution algorithm and compare quality of the computed controls and run-times. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    Importance of the accretion process in asteroid thermal evolution: 6 Hebe as an example

    METEORITICS & PLANETARY SCIENCE, Issue 5 2003
    Amitabha Ghosh
    Previous simulations of asteroid heat transfer have assumed that accretion was instantaneous. For the first time, we present a thermal model that assumes a realistic (incremental) accretion scenario and takes into account the heat budget produced by decay of 26Al during the accretion process. By modeling 6 Hebe (assumed to be the H chondrite parent body), we show that, in contrast to results from instantaneous accretion models, an asteroid may reach its peak temperature during accretion, the time at which different depth zones within the asteroid attain peak metamorphic temperatures may increase from the center to the surface, and the volume of high-grade material in the interior may be significantly less than that of unmetamorphosed material surrounding the metamorphic core. We show that different times of initiation and duration of accretion produce a spectrum of evolutionary possibilities, and thereby, highlight the importance of the accretion process in shaping an asteroid's thermal history. Incremental accretion models provide a means of linking theoretical models of accretion to measurable quantities (peak temperatures, cooling rates, radioisotope closure times) in meteorites that were determined by their thermal histories. [source]


    Measuring the plasma environment at Mercury: The fast imaging plasma spectrometer

    METEORITICS & PLANETARY SCIENCE, Issue 9 2002
    P. L. KOEHN
    Three primary populations of ions exist at Mercury: solar wind, magnetospheric, and pickup ions. These pickup ions are generated through the ionization of Mercury's exosphere or are sputtered particles from the Mercury surface. A comprehensive mission to Mercury, such as MESSENGER (MErcury: Surface, Space ENvironment, GEochemistry, Ranging), should include a sensor that is able to determine the dynamical properties and composition of all these plasma components. An instrument to measure the composition of these ion populations and their three-dimensional velocity distribution functions must be lightweight, fast, and have a very large field of view. The fast imaging plasma spectrometer (FIPS) is an imaging mass spectrometer, part of NASA's MESSENGER mission, the first Mercury orbiter. This versatile instrument has a very small footprint, and has a mass that is ,1 order of magnitude less than other comparable systems. It maintains a nearly full-hemisphere field of view, suitable for either spinning or three-axis-stabilized platforms. The major piece of innovation to enable this sensor is a new deflection system geometry that enables a large instantaneous (,1.5,) field of view. This novel electrostatic analyzer system is then combined with a position sensitive time-of-flight system. We discuss the design and prototype tests of the FIPS deflection system and show how this system is expected to address one key problem in Mercury science, that of the nature of the radar-bright regions at the Hermean poles. [source]


    The generalized spectral kurtosis estimator

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY: LETTERS (ELECTRONIC), Issue 1 2010
    G. M. Nita
    ABSTRACT Due to its conceptual simplicity and its proven effectiveness in real-time detection and removal of radio frequency interference (RFI) from radio astronomy data, the spectral kurtosis (SK) estimator is likely to become a standard tool of a new generation of radio telescopes. However, the SK estimator in its original form must be developed from instantaneous power spectral density estimates, and hence cannot be employed as an RFI excision tool downstream of the data pipeline in existing instruments where any time averaging is performed. In this Letter, we develop a generalized estimator with wider applicability for both instantaneous and averaged spectral data, which extends its practical use to a much larger pool of radio instruments. [source]


    UNSTEADY STATE DISPERSION OF AIR POLLUTANTS UNDER THE EFFECTS OF DELAYED AND NONDELAYED REMOVAL MECHANISMS

    NATURAL RESOURCE MODELING, Issue 4 2009
    MANJU AGARWAL
    Abstract In this paper, we present a two-dimensional time-dependent mathematical model for studying the unsteady state dispersion of air pollutants emitted from an elevated line source in the atmosphere under the simultaneous effects of delayed (slow) and nondelayed (instantaneous) removal mechanisms. The wind speed and coefficient of diffusion are taken as functions of the vertical height above the ground. The deposition of pollutants on the absorptive ground and leakage into the atmosphere at the inversion layer are also included in the model by applying appropriate boundary conditions. The model is solved numerically by the fractional step method. The Lagrangian approach is used to solve the advection part, whereas the Eulerian finite difference scheme is applied to solve the part with the diffusion and removal processes. The solutions are analyzed to observe the effects of coexisting delayed and nondelayed removal mechanisms on overall dispersion. Comparison of delayed and nondelayed removal processes of equal capacity shows that the latter (nondelayed) process is more effective than the former (delayed removal) in the removal of pollutants from the atmosphere. [source]


    ENTRY AND EXIT OF LABOR AND CAPITAL IN A FISHERY

    NATURAL RESOURCE MODELING, Issue 2 2005
    ASGEIR DANIELSSON
    ABSTRACT. Exit and entry of fishermen, as well as vessels, is modeled explicitly. If the speed of exit and entry of fishermen is less than instantaneous the wage rate varies with the fortunes of the fishing firms and affects the endogenous labor supply creating a second transmission mechanism from profits to effort. There are realistic cases where this mechanism has important effects on the stability of the dynamic system and on the effects of taxes (subsisdies) on the size of the fish stock. If labor supply depends negatively on the wage rate, the immediate effect of an increase in the tax rate is to increase effort and harvest. This condition makes it also more probable that the dynamic system is unstable. In those cases where the dynamic system is unstable the increase in the tax rate increases overexploitation not only in the short-term but also in the long-term. [source]