Insulin-like Peptides (insulin-like + peptide)

Distribution by Scientific Domains


Selected Abstracts


Recombinant expression of an insulin-like peptide 3 (INSL3) precursor and its enzymatic conversion to mature human INSL3

FEBS JOURNAL, Issue 18 2009
Xiao Luo
Insulin-like peptide 3 (INSL3), which is primarily expressed in the Leydig cells of the testes, is a member of the insulin superfamily of peptide hormones. One of its primary functions is to initiate and mediate descent of the testes of the male fetus via interaction with its G protein-coupled receptor, RXFP2. Study of the peptide has relied upon chemical synthesis of the separate A- and B-chains and subsequent chain recombination. To establish an alternative approach to the preparation of human INSL3, we designed and recombinantly expressed a single-chain INSL3 precursor in Escherichia coli cells. The precursor was solubilized from the inclusion body, purified almost to homogeneity by immobilized metal-ion affinity chromatography and refolded efficiently in vitro. The refolded precursor was subsequently converted to mature human INSL3 by sequential endoproteinase Lys-C and carboxypeptidase B treatment. CD spectroscopic analysis and peptide mapping showed that the refolded INSL3 possessed an insulin-like fold with the expected disulfide linkages. Recombinant human INSL3 demonstrated full activity in stimulating cAMP activity in RXFP2-expressing cells. Interestingly, the activity of the single-chain precursor was comparable with that of the mature two-chain INSL3, suggesting that the receptor-binding region within the mid- to C-terminal of B-chain is maintained in an active conformation in the precursor. This study not only provides an efficient approach for mature INSL3 preparation, but also resulted in the acquisition of a useful single-chain template for additional structural and functional studies of the peptide. [source]


JNK signaling in insulin-producing cells is required for adaptive responses to stress in Drosophila

AGING CELL, Issue 3 2009
Jason Karpac
Summary Adaptation to environmental challenges is critical for the survival of an organism. Repression of Insulin/IGF Signaling (IIS) by stress-responsive Jun-N-terminal Kinase (JNK) signaling is emerging as a conserved mechanism that allows reallocating resources from anabolic to repair processes under stress conditions. JNK activation in Insulin-producing cells (IPCs) is sufficient to repress Insulin and Insulin-like peptide (ILP) expression in rats and flies, but the significance of this interaction for adaptive responses to stress is unclear. In this study, it is shown that JNK activity in IPCs of flies is required for oxidative stress-induced repression of the Drosophila ILP2. It is found that this repression is required for growth adaptation to heat stress as well as adult oxidative stress tolerance, and that induction of stress response genes in the periphery is in part dependent on IPC-specific JNK activity. Endocrine control of IIS by JNK in IPCs is thus critical for systemic adaptation to stress. [source]


Recombinant expression of an insulin-like peptide 3 (INSL3) precursor and its enzymatic conversion to mature human INSL3

FEBS JOURNAL, Issue 18 2009
Xiao Luo
Insulin-like peptide 3 (INSL3), which is primarily expressed in the Leydig cells of the testes, is a member of the insulin superfamily of peptide hormones. One of its primary functions is to initiate and mediate descent of the testes of the male fetus via interaction with its G protein-coupled receptor, RXFP2. Study of the peptide has relied upon chemical synthesis of the separate A- and B-chains and subsequent chain recombination. To establish an alternative approach to the preparation of human INSL3, we designed and recombinantly expressed a single-chain INSL3 precursor in Escherichia coli cells. The precursor was solubilized from the inclusion body, purified almost to homogeneity by immobilized metal-ion affinity chromatography and refolded efficiently in vitro. The refolded precursor was subsequently converted to mature human INSL3 by sequential endoproteinase Lys-C and carboxypeptidase B treatment. CD spectroscopic analysis and peptide mapping showed that the refolded INSL3 possessed an insulin-like fold with the expected disulfide linkages. Recombinant human INSL3 demonstrated full activity in stimulating cAMP activity in RXFP2-expressing cells. Interestingly, the activity of the single-chain precursor was comparable with that of the mature two-chain INSL3, suggesting that the receptor-binding region within the mid- to C-terminal of B-chain is maintained in an active conformation in the precursor. This study not only provides an efficient approach for mature INSL3 preparation, but also resulted in the acquisition of a useful single-chain template for additional structural and functional studies of the peptide. [source]


Ligand-induced activation of the insulin receptor: a multi-step process involving structural changes in both the ligand and the receptor

BIOESSAYS, Issue 4 2009
Colin W. Ward
Abstract Current models of insulin binding to the insulin receptor (IR) propose (i) that there are two binding sites on the surface of insulin which engage with two binding sites on the receptor and (ii) that ligand binding involves structural changes in both the ligand and the receptor. Many of the features of insulin binding to its receptor, namely B-chain helix interactions with the leucine-rich repeat domain and A-chain residue interactions with peptide loops from another part of the receptor, are also seen in models of relaxin and insulin-like peptide 3 binding to their receptors. We show that these principles can likely be extended to the group of mimetic peptides described by Schäffer and coworkers, which are reported to have no sequence identity with insulin. This review summarizes our current understanding of ligand-induced activation of the IR and highlights the key issues that remain to be addressed. [source]


An ecdysteroid-inducible insulin-like growth factor-like peptide regulates adult development of the silkmoth Bombyx mori

FEBS JOURNAL, Issue 5 2009
Naoki Okamoto
Insulin-like growth factors (IGFs) play essential roles in fetal and postnatal growth and development of mammals. They are secreted by a wide variety of tissues, with the liver being the major source of circulating IGFs, and regulate cell growth, differentiation and survival. IGFs share some biological activities with insulin but are secreted in distinct physiological and developmental contexts, having specific functions. Although recent analyses of invertebrate genomes have revealed the presence of multiple insulin family peptide genes in each genome, little is known about functional diversification of the gene products. Here we show that a novel insulin family peptide of the silkmoth Bombyx mori, which was purified and sequenced from the hemolymph, is more like IGFs than like insulin, in contrast to bombyxins, which are previously identified insulin-like peptides in B. mori. Expression analysis reveals that this IGF-like peptide is predominantly produced by the fat body, a functional equivalent of the vertebrate liver and adipocytes, and is massively released during pupa,adult development. Studies using in vitro tissue culture systems show that secretion of the peptide is stimulated by ecdysteroid and that the secreted peptide promotes the growth of adult-specific tissues. These observations suggest that this peptide is a Bombyx counterpart of vertebrate IGFs and that functionally IGF-like peptides may be more ubiquitous in the animal kingdom than previously thought. Our results also suggest that the known effects of ecdysteroid on insect adult development may be in part mediated by IGF-like peptides. [source]


DILP-producing median neurosecretory cells in the Drosophila brain mediate the response of lifespan to nutrition

AGING CELL, Issue 3 2010
Susan J. Broughton
Summary Dietary restriction extends lifespan in diverse organisms, but the gene regulatory mechanisms and tissues mediating the increased survival are still unclear. Studies in worms and flies have revealed a number of candidate mechanisms, including the target of rapamycin and insulin/IGF-like signalling (IIS) pathways and suggested a specific role for the nervous system in mediating the response. A pair of sensory neurons in Caenorhabditis elegans has been found to specifically mediate DR lifespan extension, but a neuronal focus in the Drosophila nervous system has not yet been identified. We have previously shown that reducing IIS via the partial ablation of median neurosecretory cells in the Drosophila adult brain, which produce three of the seven fly insulin-like peptides, extends lifespan. Here, we show that these cells are required to mediate the response of lifespan to full feeding in a yeast dilution DR regime and that they appear to do so by mechanisms that involve both altered IIS and other endocrine effects. We also present evidence of an interaction between these mNSCs, nutrition and sleep, further emphasising the functional homology between the DILP-producing neurosecretory cells in the Drosophila brain and the hypothalamus of mammals in their roles as integration sites of many inputs for the control of lifespan and behaviour. [source]


Anatomy and functions of brain neurosecretory cells in diptera

MICROSCOPY RESEARCH AND TECHNIQUE, Issue 2 2003
Sakiko Siga
Abstract In the larval brain of dipteran insects, there are two medial and three lateral groups of neurons innervating the ring gland. One lateral group extends fibers to the corpus allatum. After metamorphosis, a large cluster of the medial group in the pars intercerebralis and two lateral groups in the pars lateralis innervate the retrocerebral complex and some neurons from the lateral group and a few from the medial group extend fibers to the corpus allatum in the adults. Neuropeptides such as insulin-like peptides, FMRFamide related peptides, Locusta -diuretic hormone, ,-pigment dispersing hormone, Manduca sexta -allatostatin, ovary ecdysteroidogenic hormone, and proctolin have been immunocytochemically revealed in medial groups in the pars intercerebralis, and FMRFamide related peptides, ,-pigment dispersing hormone, corazonin, and M. sexta -allatostatin in lateral groups in the pars lateralis of dipteran brains. In mosquitoes after the blood meal, ovary ecdysteroidogenic hormone from 2,3 pairs of medial neurosecretory cells is released at the corpus cardiacum to stimulate the ovaries to secrete ecdysteroid to cause ovarian development. In addition to ovarian development, removal and implantation experiments have shown that neurosecretory cells in the pars intercerebralis and pars lateralis are involved in control of reproductive diapause, cuticular tanning, sugar metabolism, and diures. Microsc. Res. Tech. 62:114,131, 2003. © 2003 Wiley-Liss, Inc. [source]