Home About us Contact | |||
Insulin Production (insulin + production)
Selected AbstractsInsulin-Producing Cells Derived from Rat Bone Marrow and Their Autologous Transplantation in the Duodenal Wall for Treating DiabetesTHE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 5 2009Yu-Hua Zhang Abstract Islet cell transplantation is one of the most promising therapies for diabetes mellitus (DM). However, the limited availability of purified islets for transplantation and the risk of immunological rejection severely limit its use. In vitro transdifferentiation of autologous bone marrow-derived mesenchymal stem cells (BMSCs) into insulin-producing cells (IPCs) could provide an abundant source of cells for this procedure and avoid immunological rejection. Here, we isolated and characterized BMSCs and induced their in vitro differentiation into IPCs. Reverse-transcription polymerase chain reaction analysis revealed that these IPCs could express Ins1, Ins2, glucagon, glucose transporter 2, and pancreatic duodenal homeobox-1. Insulin production by the IPCs was confirmed by immunocytochemistry and Western blot analysis. On this basis, donor rats supplying BMSCs were made diabetic by a single intraperitoneal injection of streptozotocin. The IPCs were then autologously transplanted into the duodenal submucosa of diabetic rats. Grafted cells could be visualized in sections after 2, 4, and 8 weeks by immunohistochemical staining for insulin. Furthermore, in the IPC-implanted group, hyperglycemia was normalized, compared with a persistent increase in glucose levels in the diabetic group and intraperitoneal glucose tolerance test-induced responses were observed in the IPC-implanted group. These results on autologous transplantation of IPCs derived from BMSCs into the duodenal wall could offer a novel potential therapeutical protocol for DM. Anat Rec, 292:728,735, 2009. © 2009 Wiley-Liss, Inc. [source] Glucose-responsive insulin-producing cells from stem cellsDIABETES/METABOLISM: RESEARCH AND REVIEWS, Issue 6 2002David J. Kaczorowski Abstract Recent success with immunosuppression following islet cell transplantation offers hope that a cell transplantation treatment for type 1 (juvenile) diabetes may be possible if sufficient quantities of safe and effective cells can be produced. For the treatment of type 1 diabetes, the two therapeutically essential functions are the ability to monitor blood glucose levels and the production of corresponding and sufficient levels of mature insulin to maintain glycemic control. Stem cells can replicate themselves and produce cells that take on more specialized functions. If a source of stem cells capable of yielding glucose-responsive insulin-producing (GRIP) cells can be identified, then transplantation-based treatment for type 1 diabetes may become widely available. Currently, stem cells from embryonic and adult sources are being investigated for their ability to proliferate and differentiate into cells with GRIP function. Human embryonic pluripotent stem cells, commonly referred to as embryonic stem (ES) cells and embryonic germ (EG) cells, have received significant attention owing to their broad capacity to differentiate and ability to proliferate well in culture. Their application to diabetes research is of particular promise, as it has been demonstrated that mouse ES cells are capable of producing cells able to normalize glucose levels of diabetic mice, and human ES cells can differentiate into cells capable of insulin production. Cells with GRIP function have also been derived from stem cells residing in adult organisms, here referred to as endogenous stem cell sources. Independent of source, stem cells capable of producing cells with GRIP function may provide a widely available cell transplantation treatment for type 1 diabetes. Copyright © 2002 John Wiley & Sons, Ltd. [source] Preserving , Cells in Type 1 Diabetes mellitus: the role of immunological toleranceDRUG DEVELOPMENT RESEARCH, Issue 3 2008Stanley R. Pillemer Abstract Type 1 diabetes mellitus (T1DM) is characterized by an autoimmune attack on beta cells of the islets of Langerhans. This immunological attack is mediated by effector T-lymphocytes and results in the destruction of the , cells. One approach to abrogating the immunological attack is to use immunosuppressive treatments. Such treatments tend to broadly suppress the immune system. A better approach is to develop treatments that induce tolerance. Autoimmune diseases are associated with the presence of inadequate numbers of functionally active regulatory T cells (Tregs). Tregs can induce a state of immunological tolerance and suppress the inflammation and destruction of target tissues. Teplizumab, also known as hOKT3,1 (Ala-Ala), is a humanized monoclonal antibody that induces Tregs. In clinical trials, treatment with this antibody preserved insulin production and improved metabolic control during the first year of T1DM. A pivotal multinational trial is in progress to determine the efficacy and safety of teplizumab in the treatment of new onset T1DM. Drug Dev Res 69:153,157, 2008. ©2008 Wiley-Liss, Inc. [source] Molecular insights into insulin action and secretionEUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 2002C. J. Rhodes Abstract Tightly co-ordinated control of both insulin action and secretion is required in order to maintain glucose homeostasis. Gene knockout experiments have helped to define key signalling molecules that affect insulin action, including insulin and insulin-like growth factor-1 (IGF-1) receptors, insulin receptor substrate (IRS) proteins and various downstream effector proteins. ,-cell function is also a tightly regulated process, with numerous factors (including certain signalling molecules) having an impact on insulin production, insulin secretion and ,-cell mass. While signalling molecules play important roles in insulin action and secretion under normal circumstances, abnormal insulin signalling in muscle, adipose tissue, liver and pancreas leads to insulin resistance and ,-cell dysfunction. In particular, the signalling protein IRS-2 may have a central role in linking these abnormalities, although other factors are likely to be involved. [source] Glucagon-like peptide-1 receptor is present on human hepatocytes and has a direct role in decreasing hepatic steatosis in vitro by modulating elements of the insulin signaling pathway,HEPATOLOGY, Issue 5 2010Nitika Arora Gupta Glucagon-like peptide 1 (GLP-1) is a naturally occurring peptide secreted by the L cells of the small intestine. GLP-1 functions as an incretin and stimulates glucose-mediated insulin production by pancreatic , cells. In this study, we demonstrate that exendin-4/GLP-1 has a cognate receptor on human hepatocytes and that exendin-4 has a direct effect on the reduction of hepatic steatosis in the absence of insulin. Both glucagon-like peptide 1 receptor (GLP/R) messenger RNA and protein were detected on primary human hepatocytes, and receptor was internalized in the presence of GLP-1. Exendin-4 increased the phosphorylation of 3-phosphoinositide-dependent kinase-1 (PDK-1), AKT, and protein kinase C , (PKC-,) in HepG2 and Huh7 cells. Small interfering RNA against GLP-1R abolished the effects on PDK-1 and PKC-,. Treatment with exendin-4 quantitatively reduced triglyceride stores compared with control-treated cells. Conclusion: This is the first report that the G protein,coupled receptor GLP-1R is present on human hepatocytes. Furthermore, it appears that exendin-4 has the same beneficial effects in vitro as those seen in our previously published in vivo study in ob/ob mice, directly reducing hepatocyte steatosis. Future use for human nonalcoholic fatty liver disease, either in combination with dietary manipulation or other pharmacotherapy, may be a significant advance in treatment of this common form of liver disease. (HEPATOLOGY 2010) [source] Prediagnostic levels of C-peptide, IGF-I, IGFBP -1, -2 and -3 and risk of endometrial cancer,INTERNATIONAL JOURNAL OF CANCER, Issue 2 2004Annekatrin Lukanova Abstract Conditions related to chronic hyperinsulinemia, such as obesity, noninsulin dependent diabetes mellitus and polycystic ovary syndrome, are associated with an increased risk of endometrial cancer. Elevated plasma IGF-I and decreased levels of IGF-binding proteins have been shown to be associated with increased risk of several cancer types that are frequent in affluent societies. We investigated for the first time in a prospective study the association of pre-diagnostic blood concentrations of C-peptide (a marker of pancreatic insulin production), IGF-I, IGFBP-1, -2 and -3 with endometrial cancer risk. A case-control study was nested within 3 cohorts in New York (USA), Umeć (Sweden) and Milan (Italy). It included 166 women with primary invasive endometrial cancer and 315 matched controls, of which 44 case and 78 control subjects were premenopausal at recruitment. Endometrial cancer risk increased with increasing levels of C-peptide (ptrend = 0.0002), up to an odds ratio (OR) of 4.76 [95% confidence interval (CI) = 1.91,11.8] for the highest quintile. This association remained after adjustment for BMI and other confounders [OR for the top quintile = 4.40 (1.65,11.7)]. IGFBP-1 levels were inversely related to endometrial cancer [ptrend = 0.002; OR in the upper quintile = 0.30 (0.15,0.62)], but the association was weakened and lost statistical significance after adjustment for confounders [ptrend = 0.06; OR in the upper quintile = 0.49 (0.22,1.07)]. Risk was unrelated to levels of IGF-I, IGFBP-2 and IGFBP-3. Chronic hyperinsulinemia, as reflected by increased circulating C-peptide, is associated with increased endometrial cancer risk. Decrease in the prevalence of chronic hyperinsulinemia, through changes in lifestyle or medication, is expected to prevent endometrial cancer. © 2003 Wiley-Liss, Inc. [source] Understanding the pathology and mechanisms of type I diabetic bone lossJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2007*Article first published online: 1 NOV 200, Laura R. McCabe Abstract Type I (T1) diabetes, also called insulin dependent diabetes mellitus (IDDM), is characterized by little or no insulin production and hyperglycemia. One of the less well known complications of T1-diabetes is bone loss which occurs in humans and animal models. This complication is receiving increased attention because T1-diabetics are living longer due to better therapeutics, and are faced with their existing health concerns being compounded by complications associated with aging, such as osteoporosis. Both male and female, endochondrial and intra-membranous, and axial and appendicular bones are susceptible to T1-diabetic bone loss. Exact mechanisms accounting for T1-diabetic bone loss are not known. Existing data indicate that the bone defect in T1-diabetes is anabolic rather than catabolic, suggesting that anabolic therapeutics may be more effective in preventing bone loss. Potential contributors to T1-diabetic suppression of bone formation are discussed in this review and include: increased marrow adiposity, hyperlipidemia, reduced insulin signaling, hyperglycemia, inflammation, altered adipokine and endocrine factors, increased cell death, and altered metabolism. Differences between T1-diabetic- and age-associated bone loss underlie the importance of condition specific, individualized treatments for osteoporosis. Optimizing therapies that prevent bone loss or restore bone density will allow T1-diabetic patients to live longer with strong healthy bones. J. Cell. Biochem. 102: 1343,1357, 2007. © 2007 Wiley-Liss, Inc. [source] PSMD9 gene variants within NIDDM2 may rarely contribute to type 2 diabetesJOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2007C. Gragnoli Multiple genome-wide scans in different populations have linked the chromosome 12q24 region, known as NIDDM2 (non-insulin-dependent-diabetes, locus 2), to type 2 diabetes. Within NIDDM2 we examined the PSMD9 (proteasome modulator 9/Bridge-1) gene that encodes a PDZ-domain transcriptional coactivator of insulin production. Our goal was to identify a potential contribution of the PSMD9 gene to type 2 diabetes in Italians. We directly sequenced the entire gene PSMD9 in Italian type 2 diabetes patients (n,=,237) and controls subjects (n,=,215) and performed an association study with the identified gene variants. We found five single nucleotide polymorphisms (SNPs), A17V, IVS1+nt29, IVS3+nt460, IVS3+nt437, and E197G, which are not associated with disease in our case,control study. Furthermore, we identified two PSMD9 gene variants in type 2 diabetes patients, which produced nonconservative amino acid substitutions S143G and N166S within the PDZ domain and two other gene variants. Three out of four of these variants are absent from the control subjects screened. We propose that the three PSMD9 gene variants (S143G, N166S and G,>,A at IVS3+nt102), absent in control subjects, contribute rarely to late-onset type 2 diabetes in Italians. In fact, the frequency rate of such variants in unrelated cases equals 0.016. We may not exclude that PSMD9 gene variants may contribute, either commonly or rarely, to an increased risk of type 2 diabetes in other populations. J. Cell. Physiol. 212:568,571, 2007. © 2007 Wiley-Liss, Inc. [source] Interactions between metabolic and reproductive functions in the resumption of postpartum fecundityAMERICAN JOURNAL OF HUMAN BIOLOGY, Issue 4 2009Claudia Valeggia Lactation has long been recognized as a major determinant of interbirth intervals. The temporal pattern of nursing has been proposed as the mechanism behind lactational amenorrhea. We present a new model of the dynamic regulation of lactational amenorrhea that identifies maternal energy availability as the main determinant of ovarian resumption. Variation in the intensity of lactation remains a component of the model as a determinant of the absolute energetic cost of milk production. However, maternal energy supply determines net energy availability; a larger energy supply leaves a greater net energy surplus than a smaller energy supply (lactation costs being equal). We characterize the hormonal postpartum profile of 70 lactating Toba women of Argentina. We use C-peptide, which reflects maternal insulin production, as a measure of energy availability. Initially low, insulin production rises as the postpartum period progresses, reflecting the declining metabolic load of lactation. A short period of supernormal insulin production precedes menstrual resumption. The high levels of insulin may play a role in stimulating the resumption of ovarian activity, which in turn may help to resolve the transient period of insulin resistance. The dynamics of insulin sensitivity during lactation would aid in synchronizing the resumption of ovarian function with a reduction in the energy demands of milk production. This hypothesis is supported by the sustained weight gain experienced by lactating women during the months preceding the first postpartum menses. The link between fecundity and energy balance could serve as a mechanism for adjusting the duration of lactational amenorrhea to the relative metabolic load of lactation. Am. J. Hum. Biol., 2009. © 2009 Wiley-Liss, Inc. [source] Safety and efficacy of adeno-associated viral vector-mediated insulin gene transfer via portal vein to the livers of streptozotocin-induced diabetic Sprague-Dawley ratsTHE JOURNAL OF GENE MEDICINE, Issue 5 2005Young Mi Park Abstract Background Previous studies demonstrating the efficacy of insulin gene therapy have mostly involved use of adenoviral vectors or naked DNA to deliver the insulin gene. However, this procedure may not guarantee long-term insulin production. To improve the performance, we prepared recombinant adeno-associated viral vectors (rAAV) harboring the gene encoding a furin-modified human insulin under the cytomegalovirus (CMV) promoter [rAAV-hPPI(F12)]. Methods Streptozotocin (STZ)-induced diabetic Sprague-Dawley rats were used as a diabetic animal model. The levels of blood glucose, insulin, and HbA1c were measured to test the effect. An intraperitoneal glucose tolerance test was performed to test the capability of blood glucose disposal. Immunohistochemical staining and Northern blot analyses were performed to survey the expression pattern of the therapeutic insulin gene. Results STZ-induced diabetic Sprague-Dawley rats infused via the portal vein with rAAV-hPPI(F12) produced human insulin and after a 6-h fast were normoglycemic for over 90 days post-treatment, whereas diabetic rats treated with recombinant adenoviral vector harboring the hPPI(F12) gene [rAV-hPPI(F12)] were normoglycemic only for days 3 to 13 post-treatment. Insulin mRNA was detected mainly in the liver of the rAAV-hPPI(F12)-treated diabetic rats. The glucose tolerance capability of the rAAV-hPPI(F12)-treated diabetic rats was comparable to that of non-diabetic rats, even without injection of recombinant insulin. Furthermore, blood HbA1c concentrations in rAAV-hPPI(F12)-treated diabetic rats were reduced to almost the normal level. Importantly, studies of rAV or rAAV vector-dependent side effects on the targeted liver strongly suggested that only rAAV treatment caused no side effects. Conclusions These results demonstrate that our rAAV-mediated in vivo insulin gene therapy provides safer maintenance of the insulin gene expression required for long-term and thus more effective blood glycemic control. Copyright © 2005 John Wiley & Sons, Ltd. [source] Human liver-derived cells stably modified for regulated proinsulin secretion function as bioimplants in vivoTHE JOURNAL OF GENE MEDICINE, Issue 4 2002Xiang Chen Abstract Background Insulin deficiency is currently treated with pharmacological insulin secretagogues, insulin injections or islet transplants. Secondary failure of pharmacological agents is common; insulin injections often fail to achieve euglycemic control; and islet transplants are rare. Non-, cells capable of regulated insulin secretion in vivo could be a functional cure for diabetes. Hepatocytes are good candidates, being naturally glucose-responsive, protein-secreting cells, while the liver is positioned to receive direct nutrient signals that regulate insulin production. Methods Human liver-derived Chang cells were modified with a plasmid construct in which a bifunctional promoter comprising carbohydrate response elements and the human metallothionein IIA promoter controlled human proinsulin cDNA expression. Secretory responses of stable cell clones were characterized in vitro and in vivo by proinsulin radioimmunoassay. Results Transfected Chang cells secreted 5,8,pmol proinsulin/106 cells per 24,h in continuous passage for at least a year in response to 5,25,mM glucose and 10,90,”M zinc in vitro. Glucose and zinc synergistically increased proinsulin production by up to 30-fold. Non-glucose secretagogues were also active. Glucose transporter 2 (GLUT2) and glucokinase cDNA co-transfection enhanced glucose responsiveness. Intraperitoneally implanted Chang cells secreted proinsulin in scid and Balb/c mice. Serum proinsulin levels were further increased 1.3-fold (p<0.05) after glucose and 1.4- to 1.6-fold (p<0.005) after zinc administration in vivo. Conclusions These results are the first to demonstrate stable proinsulin production in a human liver-derived cell line with activity in vitro and in vivo and provide a basis for engineering hepatocytes as in vivo bioimplants for future diabetes treatment. Copyright © 2002 John Wiley & Sons, Ltd. [source] Combined Coinhibitory and Costimulatory Modulation with Anti-BTLA and CTLA4Ig Facilitates Tolerance in Murine Islet AllograftsAMERICAN JOURNAL OF TRANSPLANTATION, Issue 12 2007W. Truong Complex interactions between positive and negative cosignaling receptors ultimately determine the fate of the immune response. The recently identified coinhibitory receptor, B and T lymphocyte attenuator (BTLA), contributes to regulation of autoimmune and potentially alloimmune responses. We investigated the role of BTLA in a fully major histocompatibility complex-mismatched mouse islet transplant model. We report that anti-BTLA mAb (6F7) alone does not accelerate graft rejection. Rather, while CTLA4Ig alone improved allograft survival, the addition of anti-BTLA mAb to CTLA4Ig led to indefinite (>100 days) allograft survival. Immediately after treatment with anti-BTLA mAb and CTLA4Ig, islet allografts showed intact islets and insulin production despite a host cellular response, with local accumulation of Foxp3+ cells. We clearly demonstrate that combined therapy with anti-BTLA mAb and CTLA4Ig mice induced donor-specific tolerance, since mice accepted a second donor-specific islet graft without further treatment and rejected third party grafts. CTLA4Ig and anti-BTLA mAb limited the initial in vivo proliferation of CFSE-labeled allogeneic lymphocytes, and anti-BTLA mAb enhanced the proportion of PD-1 expressing T cells while depleting pathogenic BTLA+ lymphocytes. We conclude that targeting the BTLA pathway in conjunction with CTLA4Ig costimulatory blockade may be a useful strategy for promoting immunological tolerance in murine islet allografts. [source] Hemoglobin regulates the metabolic and synthetic function of rat insulinoma cells cultured in a hollow fiber bioreactorBIOTECHNOLOGY & BIOENGINEERING, Issue 3 2010Sharon I. Gundersen Abstract Pancreatic islet transplantation continues to benefit patients with type 1 diabetes by normalizing glucose metabolism and improving other complications of diabetes. However, islet transplantation therapy is limited by the inadequate availability of pancreatic islets. In order to address this concern, this work investigated the expansion of rat insulinoma cells (INS-1) and their ability to generate insulin in a hollow fiber bioreactor (HFB). The long-term goal of this project is to develop a bioartificial pancreas. HFBs were incubated at two different oxygenation conditions (10% and 19% O2) to determine the best scenario for O2 transport to cultured cells. Also, bovine hemoglobin (BvHb) was supplemented in the cell culture media of the HFBs in order to increase O2 transport under both oxygenation conditions. Our results show that INS-1 cells expanded under all oxygenation conditions after 2 weeks of culture, with a slightly higher cell expansion under normoxic oxygenation (19% O2) for both control HFBs and BvHb HFBs. In addition, cellular insulin production remained steady throughout the study for normoxic control HFBs and BvHb HFBs, while it increased under hypoxic oxygenation (10% O2) for both types of HFBs but to different extents. Under the two different oxygenation conditions, cellular insulin production was more uniform with time in BvHb HFBs versus control HFBs. These results, along with qRT-PCR analysis, suggest a possible dysregulation of the insulin-signaling pathway under hypoxic culture conditions. In conclusion, the HFB culture system is an environment capable of expanding insulinomas while maintaining their viability and insulin production capabilities. Biotechnol. Bioeng. 2010;107: 582,592. © 2010 Wiley Periodicals, Inc. [source] (Pro3)GIP[mPEG]: novel, long-acting, mPEGylated antagonist of gastric inhibitory polypeptide for obesity-diabetes (diabesity) therapyBRITISH JOURNAL OF PHARMACOLOGY, Issue 5 2008P L McClean Background and purpose: Antagonism of the gastric inhibitory polypeptide (GIP) receptor with daily injection of proline-3 gastric inhibitory polypeptide ((Pro3)GIP) can reverse or prevent many of the metabolic abnormalities associated with diet-induced obesity-diabetes (diabesity). This study has examined the ability of a novel and longer-acting form of (Pro3)GIP, (Pro3)GIP mini-polyethylene glycol ((Pro3)GIP[mPEG]), to counter diet-induced diabesity in mice, using a daily and intermittent dosing regime. Experimental approach: We studied the actions of (Pro3)GIP[mPEG] at the GIP receptor in vitro and in vivo in both dietary and genetic diabesity. Key results: (Pro3)GIP[mPEG] was completely resistant to degradation by dipeptidyl peptidase IV. (Pro3)GIP[mPEG] inhibited GIP-induced cAMP and insulin production in vitro. A greater and prolonged antagonism of GIP-induced glucose-lowering action was followed (Pro3)GIP[mPEG] administration, compared with (Pro3)GIP. In contrast with (Pro3)GIP, mice injected once every 3 days for 48 days with (Pro3)GIP[mPEG] displayed reduced body weight gain and hyperinsulinemia with improved glucose tolerance and insulin secretory responses, compared with high-fat-fed controls. Daily i.p. injection of (Pro3)GIP, (Pro3)GIP[mPEG] or (Pro3)GIP b.i.d. for 21 days also decreased body weight, circulating plasma insulin levels and improved glucose tolerance, compared with high-fat controls. Plasma triglycerides were decreased by (Pro3)GIP[mPEG] and (Pro3)GIP b.i.d. treatment groups. The observed changes were accompanied by enhancement of insulin sensitivity in all treatment regimes. (Pro3)GIP[mPEG] was also effective over 16 days treatment of genetically obese-diabetic ob/ob mice. Conclusions and implications: These data demonstrate the utility of GIP receptor antagonism for the treatment of diabesity and the potential offered by (Pro3)GIP[mPEG] as a long-acting stable GIP receptor antagonist. British Journal of Pharmacology (2008) 155, 690,701; doi:10.1038/bjp.2008.317; published online 11 August 2008 [source] |