Home About us Contact | |||
Insulin Gene (insulin + gene)
Terms modified by Insulin Gene Selected AbstractsEffects of dietary fatty acids on insulin sensitivity and secretionDIABETES OBESITY & METABOLISM, Issue 6 2004Melania Manco Globalization and global market have contributed to increased consumption of high-fat, energy-dense diets, particularly rich in saturated fatty acids( SFAs). Polyunsaturated fatty acids (PUFAs) regulate fuel partitioning within the cells by inducing their own oxidation through the reduction of lipogenic gene expression and the enhancement of the expression of those genes controlling lipid oxidation and thermogenesis. Moreover, PUFAs prevent insulin resistance by increasing membrane fluidity and GLUT4 transport. In contrast, SFAs are stored in non-adipocyte cells as triglycerides (TG) leading to cellular damage as a sequence of their lipotoxicity. Triglyceride accumulation in skeletal muscle cells (IMTG) derives from increased FA uptake coupled with deficient FA oxidation. High levels of circulating FAs enhance the expression of FA translocase the FA transport proteins within the myocites. The biochemical mechanisms responsible for lower fatty acid oxidation involve reduced carnitine palmitoyl transferase (CPT) activity, as a likely consequence of increased intracellular concentrations of malonyl-CoA; reduced glycogen synthase activity; and impairment of insulin signalling and glucose transport. The depletion of IMTG depots is strictly associated with an improvement of insulin sensitivity, via a reduced acetyl-CoA carboxylase (ACC) mRNA expression and an increased GLUT4 expression and pyruvate dehydrogenase (PDH) activity. In pancreatic islets, TG accumulation causes impairment of insulin secretion. In rat models, ,-cell dysfunction is related to increased triacylglycerol content in islets, increased production of nitric oxide, ceramide synthesis and ,-cell apoptosis. The decreased insulin gene promoter activity and binding of the pancreas-duodenum homeobox-1 (PDX-1) transcription factor to the insulin gene seem to mediate TG effect in islets. In humans, acute and prolonged effects of FAs on glucose-stimulated insulin secretion have been widely investigated as well as the effect of high-fat diets on insulin sensitivity and secretion and on the development of type 2 diabetes. [source] The role of PAS kinase in regulating energy metabolismIUBMB LIFE, Issue 4 2008Huai-Xiang Hao Abstract Metabolic disorders, such as diabetes and obesity, are fundamentally caused by cellular energy imbalance and dysregulation. Therefore, understanding the regulation of cellular fuel and energy metabolism is of great importance to develop effective therapies for metabolic disease. The cellular nutrient and energy sensors, AMPK and TOR, play a key role in maintaining cellular energy homeostasis. Like AMPK and TOR, PAS kinase (PASK) is also a nutrient responsive protein kinase. In yeast, PAS kinase phosphorylates the enzyme Ugp1 and thereby shifts glucose partitioning toward cell wall glucan synthesis at the expense of glycogen synthesis. Consistent with this function, yeast PAS kinase is activated by both cell integrity stress and growth in non-fermentative carbon sources. PASK is also important for proper regulation of glucose metabolism in mammals at both the hormonal and cellular level. In cultured pancreatic ,-cells, PASK is activated by elevated glucose concentrations and is required for glucose-stimulated transcription of the insulin gene. PASK knockdown in cultured myoblasts causes increased glucose oxidation and elevated cellular ATP levels. Mice lacking PASK exhibit increased metabolic rate and resistance to diet-induced obesity. Interestingly, PGC-1 expression and AMPK and TOR activity were not affected in PASK deficient mice, suggesting PASK may exert its metabolic effects through a new mechanism. We propose that PASK plays a significant role in nutrient sensing, metabolic regulation, and energy homeostasis, and is a potential therapeutic target for metabolic disease. © 2008 IUBMB IUBMB Life, 60(4): 204,209, 2008 [source] A genome-inspired DNA ligand for the affinity capture of insulin and insulin-like growth factor-2JOURNAL OF SEPARATION SCIENCE, JSS, Issue 10 2009Junfeng Xiao Abstract The insulin-linked polymorphic region (ILPR) of the human insulin gene contains tandem repeats of similar G-rich sequences, some of which form intramolecular G-quadruplex structures in vitro. Previous work showed affinity binding of insulin to an intramolecular G-quadruplex formed by ILPR variant a. Here, we report on interactions of insulin and the highly homologous insulin-like growth factor-2 (IGF-2) with ILPR variants a, h, and i. Circular dichroism indicated intramolecular G-quadruplex formation for variants a and h. Affinity MALDI MS and surface plasmon resonance were used to compare protein capture and binding strengths. Insulin and IGF-2 exhibited high binding affinity for variants a and h but not i, indicating the involvement of intramolecular G-quadruplexes. Interaction between insulin and variant a was unique in the appearance of two binding interactions with KD , 10,13 M and KD , 10,7 M, which was not observed for insulin with variant h (KD , 10,8 M) or IGF-2 with either variant (KDs , 10,9 M). The results provide a basis for the design of DNA binding ligands for insulin and IGF-2 and support a new approach to discovery of DNA affinity binding ligands based on genome-inspired sequences rather than the traditional combinatorial selection route to aptamer discovery. [source] Serum, liver, and kidney proteomic analysis for the alloxan-induced type I diabetic mice after insulin gene transfer of naked plasmid through electroporationPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 21 2006Wei-Fei Diao Abstract Gene therapy has been reported to be effective in treating diabetes mellitus (DM), while little has been found out about the functional protein changes since. The liver and kidney play important roles in glucose absorption, metabolism, and excretion. Changes in the two organs may reflect pathologic alterations during DM, while the serum has a direct connection with most organs and pathological changes. We used alloxan to induce diabetic mice, electrotranferred the insulin gene into their sural muscles, and discovered that their blood glucose decreased to normal level. Consequently, proteomic approaches were applied to evaluate protein changes in the liver, kidney, and serum of normal, diabetic, and gene transferred mice. Forty-three proteins were found either up-regulated or down-reglulated in the liver, kidney, and serum of the alloxan-induced type I diabetic mice. Only five proteins in the liver, five proteins in the kidney, and seven proteins in the serum of diabetic mice were found to be back-regulated to normal levels after gene transfer. These back-regulated proteins are involved in lipid and glucose metabolism, associated with phosphorylation, signal transduction, oxidation, and immune inflammation. Our findings might promote a better understanding for the mechanism of DM, and provide novel targets for estimating the effects of gene therapy. [source] Safety and efficacy of adeno-associated viral vector-mediated insulin gene transfer via portal vein to the livers of streptozotocin-induced diabetic Sprague-Dawley ratsTHE JOURNAL OF GENE MEDICINE, Issue 5 2005Young Mi Park Abstract Background Previous studies demonstrating the efficacy of insulin gene therapy have mostly involved use of adenoviral vectors or naked DNA to deliver the insulin gene. However, this procedure may not guarantee long-term insulin production. To improve the performance, we prepared recombinant adeno-associated viral vectors (rAAV) harboring the gene encoding a furin-modified human insulin under the cytomegalovirus (CMV) promoter [rAAV-hPPI(F12)]. Methods Streptozotocin (STZ)-induced diabetic Sprague-Dawley rats were used as a diabetic animal model. The levels of blood glucose, insulin, and HbA1c were measured to test the effect. An intraperitoneal glucose tolerance test was performed to test the capability of blood glucose disposal. Immunohistochemical staining and Northern blot analyses were performed to survey the expression pattern of the therapeutic insulin gene. Results STZ-induced diabetic Sprague-Dawley rats infused via the portal vein with rAAV-hPPI(F12) produced human insulin and after a 6-h fast were normoglycemic for over 90 days post-treatment, whereas diabetic rats treated with recombinant adenoviral vector harboring the hPPI(F12) gene [rAV-hPPI(F12)] were normoglycemic only for days 3 to 13 post-treatment. Insulin mRNA was detected mainly in the liver of the rAAV-hPPI(F12)-treated diabetic rats. The glucose tolerance capability of the rAAV-hPPI(F12)-treated diabetic rats was comparable to that of non-diabetic rats, even without injection of recombinant insulin. Furthermore, blood HbA1c concentrations in rAAV-hPPI(F12)-treated diabetic rats were reduced to almost the normal level. Importantly, studies of rAV or rAAV vector-dependent side effects on the targeted liver strongly suggested that only rAAV treatment caused no side effects. Conclusions These results demonstrate that our rAAV-mediated in vivo insulin gene therapy provides safer maintenance of the insulin gene expression required for long-term and thus more effective blood glycemic control. Copyright © 2005 John Wiley & Sons, Ltd. [source] |