In-situ

Distribution by Scientific Domains
Distribution within Polymers and Materials Science

Terms modified by In-situ

  • in-situ hybridization
  • in-situ measurement
  • in-situ polymerization

  • Selected Abstracts


    In-Situ and Ex-Situ Bioremediation Options for Treating Perchlorate in Groundwater

    REMEDIATION, Issue 2 2002
    Paul B. Hatzinger
    Perchlorate has been identified as a water contaminant in 14 states, including California, Nevada, New Mexico, Arizona, Utah, and Texas, and current estimates suggest that the compound may affect the drinking water of as many as 15 million people. Biological treatment represents the most-favorable technology for the effective and economical removal of perchlorate from water. Biological fluidized bed reactors (FBRs) have been tested successfully at the pilot scale for perchlorate treatment at several sites, and two full-scale FBR systems are currently treating perchlorate-contaminated groundwater in California and Texas. A third full-scale treatment system is scheduled for start-up in early 2002. The in-situ treatment of perchlorate through addition of specific electron donors to groundwater also appears to hold promise as a bioremediation technology. Recent studies suggest that perchlorate-reducing bacteria are widely occurring in nature, including in groundwater aquifers, and that these organisms can be stimulated to degrade perchlorate to below the current analytical reporting limit (< 4 ,g/l) in many instances. In this article, in-situ and ex-situ options for biological treatment of perchlorate-contaminated groundwater are discussed and results from laboratory and field experiments are presented. © 2002 Wiley Periodicals, Inc. [source]


    As(III) Determination in the Presence of Pb(II) by Differential Alternative Pulses Voltammetry

    ELECTROANALYSIS, Issue 15 2010
    Roumen Zlatev
    Abstract Differential Alternative Pulses Voltammetry (DAPV), introduced by the authors earlier, was applied with HMDE for direct As(III) determination in the presence of Pb(II) in natural water without sample pretreatment. Distinguishable peaks of As(III) and Pb(II) were registered in 1,M HCl supporting electrolyte at a concentration ratio as high as 1,:,6, while complete peak overlapping occurs applying DPP at any concentration ratio at the same experimental conditions. In-situ As(III) determinations in the presence of Pb(II) in contaminated ground waters in Mexico were performed, using especially designed disposable safe mercury drop electrodes. [source]


    Verhalten laserschockverfestigter und festgewalzter Randschichten der Ti-Legierung Ti-6Al-4V bei schwingender Beanspruchung unter erhöhten Temperaturen

    MATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, Issue 6 2003
    I. Altenberger
    Laser Shock Peening; Deep Rolling; Residual Stresses; Ti-6-4 Abstract Es ist seit langem bekannt, dass mechanische Oberflächenbehandlungen wie etwa Festwalzen, Kugelstrahlen oder Laserschockoberflächenbehandlungen, um nur einige zu nennen, das Ermüdungsverhalten hochbeanspruchter metallischer Bauteile entscheidend verbessern können. Insbesondere Festwalzen und Laserschockoberflächenbehandlungen haben sich als besonders wirksam herausgestellt, da sie tiefe Druckeigenspannungs- und Verfestigungsprofile sowie eine vergleichsweise glatte Oberflächentopographie erzeugen. Tatsächlich wird z.,B. das Festwalzen bereits serienmässig zur Erhöhung der Schwingfestigkeit von Stählen, wie etwa beim Festwalzen von Kurbelwellen, eingesetzt. Obwohl die meisten Arbeiten zum Festwalzen sich mit Stählen beschäftigen, wurde dieses Verfahren in jüngerer Zeit auch auf eine Reihe von Titanwerkstoffen erfolgreich angewendet. Die vorliegenden Untersuchungen beschäftigen sich mit dem Einfluss von Festwalzbehandlungen auf das Niedrig- und Hochlastwechselermüdungsverhalten der wichtigsten kommerziellen Titanlegierung Ti-6Al-4V, wobei besonderes Augenmerk auf die thermische und mechanische Stabilität randnaher Eigenspannungszustände und Mikrostrukturen gerichtet wurde. Zusätzlich werden erste Ergebnisse zum Eigenspannungszustand und zur Schwingfestigkeit lasergeschockter Ti-6Al-4V-Proben präsentiert und mit Resultaten festgewalzter Zustände verglichen. Ausserdem wird untersucht, ob die Oberflächenbehandlungen auch bei erhöhten Temperaturen (bis 450,°C) ihre Wirksamkeit zur Verbesserung der Schwingfestigkeit behalten. Basierend auf Wechselverformungs- und Lebensdaueruntersuchungen, in Kombination mit Röntgendiffraktometrie und In-situ -Transmissionselektronenmikroskopie, lässt sich feststellen, dass Laserschockoberflächenbehandlungen und insbesondere Festwalzen die Rissbildung und Ausbreitung in hochtemperaturschwingbeanspruchtem Ti-6Al-4V trotz eines fast völligen Druckeigenspannungsabbaus wirkungsvoll hemmt. Daraus lässt sich ableiten, dass zusätzlich zu Eigenspannungen vor allem randnahe Mikrostrukturen, welche im Falle von mechanisch randschichtverfestigtem Ti-6Al-4V durch sehr hohe Versetzungsdichten und Nanokristallite gekennzeichnet ist, einen wesentlichen Einfluss bei der Lebensdauererhöhung durch Randschichtverfestigung haben. Residual stress stability and near-surface microstructures in high temperature fatigued mechanically surface treated Ti-6Al-4V It is well known that mechanical surface treatments, such as deep rolling, shot peening and laser shock peening, can significantly improve the fatigue behavior of highly-stressed metallic components. Deep rolling is particularly attractive since it is possible to generate, near the surface, deep compressive residual stresses and work hardened layers while retaining a relatively smooth surface finish. In the present investigation, the effect of deep rolling on the low-cycle and high-cycle fatigue behavior of a Ti-6Al-4V alloy is examined, with particular emphasis on the thermal and mechanical stability of the residual stress states and the near-surface microstructures. Preliminary results on laser shock peened Ti-6Al-4V are also presented for comparison. Particular emphasis is devoted to the question of whether such surface treatments are effective for improving the fatigue properties at elevated temperatures up to ,450,°C, i.e., at an homologous temperature of ,0.4 T/Tm (where Tm is the melting temperature). Based on cyclic deformation and stress/life (S/N) fatigue behavior, together with the X-ray diffraction and in situ transmission electron microscopy observations of the microstructure, it was found that deep rolling can be quite effective in retarding the initiation and initial propagation of fatigue cracks in Ti-6Al-4V at such higher temperatures, despite the almost complete relaxation of the near-surface residual stresses. In the absence of such stresses, it is shown that the near-surface microstructures, which in Ti-6Al-4V consist of a layer of work hardened nanoscale grains, play a critical role in the enhancement of fatigue life by mechanical surface treatment. [source]


    Selective laser sintering of aluminium- and titanium-based composites: processing and characterisation

    PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 3 2003
    S. Vaucher
    Abstract Metal matrix composites have been processed by selective laser sintering of metal-ceramic powder blends. The feasibility of manufacturing Al- and Ti-based composites reinforced with various ceramic particles has been assessed. The resulting microstructures are strongly dependent on the laser power and metal-ceramic reactivity. High laser power results in improved density. In-situ grown carbides develop during sintering in AlMg12,SiC and Ti-graphite systems. On the contrary, no discernible reaction has been observed in AlSi20,SiC and Ti-diamond systems. (© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    A General Method for the Rapid Synthesis of Hollow Metallic or Bimetallic Nanoelectrocatalysts with Urchinlike Morphology

    CHEMISTRY - A EUROPEAN JOURNAL, Issue 15 2008
    Shaojun Guo
    Abstract We have reported a facile and general method for the rapid synthesis of hollow nanostructures with urchinlike morphology. In-situ produced Ag nanoparticles can be used as sacrificial templates to rapidly synthesize diverse hollow urchinlike metallic or bimetallic (such as Au/Pt) nanostructures. It has been found that heating the solution at 100,°C during the galvanic replacement is very necessary for obtaining urchinlike nanostructures. Through changing the molar ratios of Ag to Pt, the wall thickness of hollow nanospheres can be easily controlled; through changing the diameter of Ag nanoparticles, the size of cavity of hollow nanospheres can be facilely controlled; through changing the morphologies of Ag nanostructures from nanoparticle to nanowire, hollow Pt nanotubes can be easily designed. This one-pot approach can be extended to synthesize other hollow nanospheres such as Pd, Pd/Pt, Au/Pd, and Au/Pt. The features of this technique are that it is facile, quick, economical, and versatile. Most importantly, the hollow bimetallic nanospheres (Au/Pt and Pd/Pt) obtained here exhibit an area of greater electrochemical activity than other Pt hollow or solid nanospheres. In addition, the ,6,nm hollow urchinlike Pt nanospheres can achieve a potential of up to 0.57,V for oxygen reduction, which is about 200,mV more positive than that obtained by using a ,6,nm Pt nanoparticle modified glassy carbon (GC) electrode. Rotating ring-disk electrode (RRDE) voltammetry demonstrates that ,6,nm hollow Pt nanospheres can catalyze an almost four-electron reduction of O2 to H2O in air-saturated H2SO4 (0.5,M). Finally, compared to the ,6,nm Pt nanoparticle catalyst, the ,6,nm hollow urchinlike Pt nanosphere catalyst exhibits a superior electrocatalytic activity toward the methanol oxidation reaction at the same Pt loadings. [source]


    Development of InN metalorganic vapor phase epitaxy using in-situ spectroscopic ellipsometry

    CRYSTAL RESEARCH AND TECHNOLOGY, Issue 10-11 2005
    M. Drago
    Abstract Metalorganic vapor phase epitaxy of InN layers on sapphire was studied in-situ by spectroscopic ellipsometry (SE), ex-situ atomic force microscopy and optical microscopy. Surface morphology has been largely improved by using nitrogen instead of hydrogen as carrier gas during sapphire nitridation. Using the sensitivity of in-situ SE with respect to roughness we established a new growth procedure with low V/III ratio (104) at high temperature (580 °C) and growth rates as high as 350 nm/h, leading to improved electronic layer properties and allowing for growth of comparably thick layers. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Schizophrenia; from structure to function with special focus on the mediodorsal thalamic prefrontal loop

    ACTA PSYCHIATRICA SCANDINAVICA, Issue 5 2009
    B. Pakkenberg
    Objective:, To describe structural and biochemical evidence from postmortem brains that implicates the reciprocal connections between the mediodorsal thalamic nucleus and the prefrontal cortex in cognitive symptoms of schizophrenia. Method:, The estimation of the regional volumes and cell numbers was obtained using stereological methods. The biochemical analyses of molecular expression in postmortem brain involve quantitative measurement of transcripts and proteins by in-situ (RNA) or Western blot/autoradiography in brains from patients with schizophrenia and comparison subjects. Results:, Stereological studies in postmortem brain from patients with schizophrenia have reported divergent and often opposing findings in the total number of neurons and volume of the mediodorsal (MD) thalamic nucleus, and to a lesser degree in its reciprocally associated areas of the prefrontal cortex. Similarly, quantitative molecular postmortem studies have found large inter-subject and between-study variance at both the transcript and protein levels for receptors and their interacting molecules of several neurotransmitter systems in these interconnected anatomical regions. Combined, large variation in stereological and molecular studies indicates a complex and heterogeneous involvement of the MD thalamic-prefrontal loop in schizophrenia. Conclusion:, Based on a considerable heterogeneity in patients suffering from schizophrenia, large variation in postmortem studies, including stereological and molecular postmortem studies of the MD thalamus and frontal cortex, might be expected and may in fact partly help to explain the variable endophenotypic traits associated with this severe psychiatric illness. [source]


    Study of the Complexation, Adsorption and Electrode Reaction Mechanisms of Chromium(VI) and (III) with DTPA Under Adsorptive Stripping Voltammetric Conditions

    ELECTROANALYSIS, Issue 19 2003
    Sylvia Sander
    Abstract The complexation of Cr(III) and Cr(VI) with diethylenetriaminepentaacetic acid (DTPA), the redox behavior of these complexes and their adsorption on the mercury electrode surface were investigated by a combination of electrochemical techniques and UV/vis spectroscopy. A homogenous two-step reaction was observed when mixing Cr(III), present as hexaquo complex, with DTPA. The first reaction product, the electroactive 1,:,1 complex, turns into an electroinactive form in the second step. The results indicate that the second reaction product is presumably a 1,:,2 Cr(III)/DTPA complex. The electroreduction of the DTPA-Cr(III) complex to Cr(II) was found to be diffusion rather than adsorption controlled. The Cr(III) ion, generated in-situ from Cr(VI) at the mercury electrode at about ,50,mV (vs. Ag|AgCl) (3,mol,L,1 KCl), was found to form instantly an electroactive and adsorbable complex with DTPA. By means of electrocapillary measurements its surface activity was shown to be 30 times higher than that of the complex built by homogenous reaction of DTPA with the hydrated Cr(III). Both components, DTPA and the in-situ built complex Cr(III) ion were found to adsorb on the mercury electrode. The effect of nitrate, used as catalytic oxidant in the voltammetric determination method, on the complexation reaction and on the adsorption processes was found to be negligible. The proposed complex structures and an overall reaction scheme are shown. [source]


    A Temporary Stereocentre Approach for the Stereodivergent Synthesis of Either Enantiomer of ,-Methyloctanal

    EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 33 2007
    D. Gangani Niyadurupola
    Abstract The aldol reaction of a chiral N -(acyl)oxazolidin-2-one with 2-methyleneoctanal or (E)-2-methyloct-2-enal affords chiral aldol products whose alkene functionalities were hydrogenated using Brown's or Wilkinson's catalyst to afford syn - or anti -selective products with excellent levels of diastereocontrol. Subsequent retro -aldol cleavage of these syn - or anti -adducts resulted in the formation of either (R)- or (S)-enantiomer of ,-methyloctanal with no racemisation occurring, which could be derivatised in-situ to afford chiral dithiane, alcohol or ,,,-unsaturated ester products in enantiopure form.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007) [source]


    Polyphenylene Dendrimer-Templated In Situ Construction of Inorganic,Organic Hybrid Rice-Shaped Architectures

    ADVANCED FUNCTIONAL MATERIALS, Issue 1 2010
    Xiaoying Qi
    Abstract A novel dendrimer-templating method for the synthesis of CuO nanoparticles and the in situ construction of ordered inorganic,organic CuO,G2Td(COOH)16rice-shaped architectures (RSAs) with analogous monocrystalline structures are reported. The primary CuO nanoparticles are linked by the G2Td(COOH)16 dendrimer. This method provides a way to preserve the original properties of primary CuO nanoparticles in the ordered hybrid nanomaterials by using the 3D rigid polyphenylene dendrimer (G2Td(COOH)16) as a space isolation. The primary CuO nanoparticles with diameter of (6.3,±,0.4) nm are synthesized via four successive reaction steps starting from the rapid reduction of Cu(NO3)2 by using NaBH4 as reducer and G2Td(COOH)16 as surfactant. The obtained hybrid CuO,G2Td(COOH)16 RSA, formed in the last reaction step, possesses a crystal structure analogous to a monocrystal as observed by transmission electron microscopy(TEM). In particular, the formation process of the RSA is monitored by UV,vis, TEM, and X-ray diffraction. Small angle X-ray scattering and Fourier transform infrared spectroscopy are used to investigate the role of the dendrimer in the RSA formation process. The obtained results illuminate that Cu2+COO, coordination bonds play an indispensable role in bridging and dispersing the primary CuO nanoparticles to induce and maintain the hybrid RSA. More importantly, the RSA is retained through the Cu2+COO,coordination bonds even with HCl treatment, suggesting that the dendrimers and Cu2+ ions may form rice-shaped polymeric complexes which could template the assembly of CuO nanoparticles towards RSAs. This study highlights the feasibility and flexibility of employing the peculiar dendrimers to in-situ build up hybrid architectures which could further serve as templates, containers or nanoreactors for the synthesis of other nanomaterials. [source]


    Quantitative detection of fluid distribution using time-lapse seismic

    GEOPHYSICAL PROSPECTING, Issue 2 2007
    Futoshi Tsuneyama
    ABSTRACT Although previous seismic monitoring studies have revealed several relationships between seismic responses and changes in reservoir rock properties, the quantitative evaluation of time-lapse seismic data remains a challenge. In most cases of time-lapse seismic analysis, fluid and/or pressure changes are detected qualitatively by changes in amplitude strength, traveltime and/or Poisson's ratio. We present the steps for time-lapse seismic analysis, considering the pressure effect and the saturation scale of fluids. We then demonstrate a deterministic workflow for computing the fluid saturation in a reservoir in order to evaluate time-lapse seismic data. In this approach, we derive the physical properties of the water-saturated sandstone reservoir, based on the following inputs: VP, VS, , and the shale volume from seismic analysis, the average properties of sand grains, and formation-water properties. Next, by comparing the in-situ fluid-saturated properties with the 100% formation-water-saturated reservoir properties, we determine the bulk modulus and density of the in-situ fluid. Solving three simultaneous equations (relating the saturations of water, oil and gas in terms of the bulk modulus, density and the total saturation), we compute the saturation of each fluid. We use a real time-lapse seismic data set from an oilfield in the North Sea for a case study. [source]


    Diffusion of Adhesion Layer Metals Controls Nanoscale Memristive Switching

    ADVANCED MATERIALS, Issue 36 2010
    J. Joshua Yang
    Thermal diffusion of Ti through Pt electrode forms Ti atom channels of 1 nm diameter along Pt grain boundaries, seeding switching centers and controlling nanoscale memristive switching. The image shows EFTEM maps of Ti overlaid on HRTEM images for a Si/SiO2 100 nm/Ti 5nm/Pt 15 nm sample in-situ annealed in ultrahigh vacuum at 250 °C for 1 hour. [source]


    The effect of desalivation on the malignant transformation of the tongue epithelium and associated stromal myofibroblasts in a rat 4-nitroquinoline 1-oxide-induced carcinogenesis model

    INTERNATIONAL JOURNAL OF EXPERIMENTAL PATHOLOGY, Issue 4 2010
    Marilena Vered
    Summary The aim of our study was to analyse desalivated rat tongue epithelium for histopathological changes, proliferating cell nuclear antigen (PCNA), and epithelium-associated stromal myofibroblasts [SMF; ,-smooth muscle actin (,SMA)] following 0.001% 4-nitroquinoline 1-oxide (4NQO) administration in drinking water. Results were compared with those of identically treated but salivated specimens. 4NQO was administered for 7, 14, 22 and 28 weeks. Tongue length was divided into anterior, middle and posterior ,thirds'. The histopathological changes per ,third' were scored as normal epithelium, hyperplasia, dysplasia, carcinoma- in-situ, and superficial and invasive carcinoma. The PCNA and ,SMA stains were assessed by a point-counting method. At all time points, the histopathological changes in the anterior and middle thirds were higher in the desalivated than in the salivated group (P < 0.05) but almost identical in the posterior third (P > 0.05). PCNA scores were significantly lower in the desalivated vs. the salivated group at almost all time points and tongue thirds (P < 0.05). SMF were usually scarce in both groups, but there was a significant surge in the posterior third at 28 weeks: the score in the desalivated group was only about one-half that of the salivated group (P < 0.05). The absence of saliva seems to promote malignant transformation of the tongue epithelium in the early stages. PCNA cannot be regarded as a marker of proliferation and probably contributes to this process by other mechanisms. Emergence of SMF seems to be highly dependent on growth factors from saliva in addition to factors from cancerous cells. [source]


    Catalytic porous ceramic prepared in-situ by sol-gelation for butane-to-syngas processing in microreactors

    AICHE JOURNAL, Issue 7 2009
    Nico Hotz
    Abstract In this study, a novel flow-based method is presented to place catalytic nanoparticles into a reactor by sol-gelation of a porous ceramic consisting of Rh/ceria/zirconia nanoparticles, silica sand, ceramic binder, and a gelation agent. This method allows for the placement of a liquid precursor containing the catalyst into the final reactor geometry without the need of impregnating or coating of a substrate with the catalytic material. The so generated foam-like porous ceramic shows properties highly appropriate for use as catalytic reactor material, e.g., reasonable pressure drop due to its porosity, high thermal and catalytic stability, and excellent catalytic behavior. To investigate the catalytic activity, microreactors containing this foam-like ceramic are employed for the production of hydrogen and carbon monoxide-rich syngas from butane. The effect of operating parameters such as the inlet flow rate on the hydrocarbon processing is analyzed and the limitation of the reactor by diffusion mass transport is investigated. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source]


    In-vitro release and oral bioactivity of insulin in diabetic rats using nanocapsules dispersed in biocompatible microemulsion

    JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 4 2002
    Suchat Watnasirichaikul
    This study evaluated the potential of poly(iso -butyl cyanoacrylate) (PBCA) nanocapsules dispersed in a biocompatible microemulsion to facilitate the absorption of insulin following intragastric administration to diabetic rats. Insulin-loaded PBCA nanocapsules were prepared in-situ in a biocompatible water-in-oil microemulsion by interfacial polymerisation. The microemulsion consisted of a mixture of medium-chain mono-, di- and tri-glycerides as the oil component, polysorbate 80 and sorbitan mono-oleate as surfactants and an aqueous solution of insulin. Resulting nanocapsules were approximately 200 nm in diameter and demonstrated a high efficiency of insulin entrapment (> 80%). In-vitro release studies showed that PBCA nanocapsules could suppress insulin release in acidic media and that release at near neutral conditions could be manipulated by varying the amount of monomer used for polymerisation. Subcutaneous administration of insulin-loaded nanocapsules to diabetic rats demonstrated that the bioactivity of insulin was largely retained following this method of preparing peptide-loaded nanocapsules and that the pharmacodynamic response was dependent on the amount of monomer used for polymerisation. The intragastric administration of insulin-loaded nanocapsules dispersed in the biocompatible microemulsion resulted in a significantly greater reduction in blood glucose levels of diabetic rats than an aqueous insulin solution or insulin formulated in the same microemulsion. This study demonstrates that the formulation of peptides within PBCA nanocapsules that are administered dispersed in a microemulsion can facilitate the oral absorption of encapsulated peptide. Such a system can be prepared in-situ by the interfacial polymerisation of a water-in-oil biocompatible microemulsion. [source]


    Oral sustained delivery of theophylline from thermally reversible xyloglucan gels in rabbits

    JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 9 2001
    Shozo Miyazaki
    Thermally reversible gels formed in-situ following the oral administration of dilute aqueous solutions of an enzyme-degraded xyloglucan to rabbits were evaluated as sustained-release vehicles for the delivery of theophylline. In-vitro release of theophylline from gels formed by warming xyloglucan sols (0.5, 1.0 and 1.5% w/w) to 37°C followed root-time kinetics over a period of 4 h. Gels formed after oral administration to rabbits of chilled 1.5% w/w aqueous solutions of xyloglucan containing dissolved drug showed sustained-release characteristics with a maximum plasma concentration at 4.5 h. The theophylline bioavailability from a 1.5% w/w xyloglucan gel was 1.7,2.5 times that of commercial oral sustained-release liquid dosage forms containing an identical theophylline concentration. It was concluded that dilute solutions of the enzyme-degraded xyloglucan had suitable rheological properties and in-situ gelling characteristics for use as sustained-release vehicles for oral drug delivery. The in-vivo release characteristics of theophylline in a rabbit model suggested the potential for the use of these vehicles in humans for the oral delivery of this drug. [source]


    Preparation of poly(acrylamide)/MWNTs nanocomposite using carboxylated MWNTs

    JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 15 2007
    Jinho Hong
    Polyacrylamide/MWNTs nanocomposite is prepared using MWNTs functionalized with carboxylic acid or carboxylic anion groups. The modified MWNTs show significantly improved colloidal stability without aggregation in aqueous acrylamide solution. The solution was in-situ polymerized to give a well-dispersed PAAm/MWNTs nanocomposite. [source]


    Sentinel lymph node as a new marker for therapeutic planning in breast cancer patients

    JOURNAL OF SURGICAL ONCOLOGY, Issue 3 2004
    Marco Gipponi MD
    Abstract Background and Objectives Literature review suggests that the sentinel lymph node (sN) represents a reliable predictor of axillary lymph node status in breast cancer patients; however, some important issues, such as the optimisation of the technique for the intraoperative identification of the sN, the role of intraoperative frozen section examination of the sN, and the clinical implications of sN metastasis as regards the surgical management of the axilla, still require further confirmation. The authors aimed (1) to assess the feasibility of sN identification with a combined approach (vital blue dye lymphatic mapping and radioguided surgery, RGS) and the specific contribution of either techniques to the detection of the sN, (2) to determine the accuracy and usefulness of intraoperative frozen section examination of the sN in order to perform a one-stage surgical procedure, and (3) to define how the sN might modulate the therapeutic planning in different stages of disease. Materials and Methods From October 1997 to June 2001, 334 patients with early-stage (T1,2 N0 M0) invasive mammary carcinoma underwent sN biopsy; the average age of patients was 61.5 years (range, 39,75 years). In a subset of 153 patients, both vital blue dye (Patent Blue-V) lymphatic mapping and RGS were used to identify the sN, and the relative contribution of each of the two techniques was assessed. Results In the whole group, the sN was identified in 326 of 334 patients (97.6%), and 105 of 326 patients (37.3%) had positive axillary lymph nodes (pN+). In 9 of 105 pN+ patients, the definitive histologic examination of the sN did not show metastases but these were detected in non-sN, thus giving an 8.6% false-negative rate, a negative predictive value of 94.5% (156/165), and an accuracy of 96.5% (252/261). As regards the specific contribution of the two different techniques used in the identification of the sN, the detection rate was 73.8% (113/153) with Patent Blue-V alone, 94.1% (144/153) with RGS alone, and 98.7% (151/153) with Patent Blue-V combined with RGS (P,<,0.001). Noteworthy, whenever the sN was identified, the prediction of axillary lymph node status was remarkably similar (93,95% sensitivity; 100% specificity; 95,97% negative predictive value, and 97,98% accuracy) whichever of the three procedures was adopted (Patent Blue-V alone, RGS alone, or combined Patent Blue-V and RGS). Intraoperative frozen section examination was performed in 261 patients, who had at least one sN identified, out of 267 patients who underwent complete axillary dissection; 170 patients had histologically negative sN (i.o. sN,) and 91 patients histologically positive sN (i.o. sN+). All 91 i.o. sN+ were confirmed by definitive histology, whereas in 14 of 170 i.o. sN, patients (8.2%) metastases were detected at definitive histology. As regards the correlation between the size of sN metastasis, the primary tumour size, and the status of non-sN in the axilla, micrometastases were detected at final histology in 23 patients and macrometastases in 82 patients. When only micrometastases were detected, the sN was the exclusive site of nodal metastasis in 20 of 23 patients (86.9%) while in 3 patients with tumour size larger than 10 mm micrometastases were detected also in non-sN. Macrometastases were never detected in pT1a breast cancer patients; the sN was the exclusive site of these metastases in 30 patients (36.6%), while in 52 patients (63.4%) there were metastases both in sN and non-sN. Conclusions Sentinel lymphadenectomy can better be accomplished when both procedures (lymphatic mapping with vital blue dye and RGS) are used, because of the significantly higher sN detection rate, although the prediction of axillary lymph node status remains remarkably similar whichever method is used. The intraoperative frozen section examination proved to be rather accurate in predicting the actual pathologic status of the sN, with a negative predictive value of 91.8%; in 35% of patients it allowed sN biopsy and axillary dissection to be performed in a one-stage surgical procedure. Finally, specific clinical and histopathologic features of the primary tumour and sN might be used to tailor the loco-regional and systemic treatment in different clinical settings, such as in ductal carcinoma in-situ (DCIS), early-stage invasive breast cancer, and patients with large breast cancer undergoing neo-adjuvant CT for breast-saving surgery as well as elderly patients with operable breast cancer. J. Surg. Oncol. 2004;85:102,111. © 2004 Wiley-Liss, Inc. [source]


    Interpenetrating Polymer Networks with Spatially Graded Morphology Controllable by UV-Radiation Curing

    MACROMOLECULAR SYMPOSIA, Issue 1 2006
    Hideyuki Nakanishi
    Abstract Interpenetrating Polymer Networks (IPNs) composed of polystyrene (PS) and poly(methyl methacrylate) (PMMA) were synthesized from a precursor mixture by using dissimilar photo-cross-link reactions. When the reation yields exceeded a certain threshold, the mixture was quenched from one-phase region into two-phase region, leading to phase separation. Upon irradiation with strong UV-light, an intensity gradient was formed along the propagating direction of the exciting light, generating a gradient of quench depth via the spatial inhomogeneity of the cross-link reactions. As a consequence, a gradient of the characteristic length scales was continuously generated from the top to the bottom of the mixture. The resulting three-dimensional (3-D) morphology was in-situ observed at different depths of the mixture by using a laser-scanning confocal microscope (LSCM). From this 3-D observation, it was found that phase separation was accelerated at the bottom of the mixture and proceeded in an autocatalytic fashion. The mechanism for the formation of the graded morphology was discussed in conjunction with the kinetics of the autocatalytic phase separation. [source]


    Dependence of the interfacial reaction and morphology development on the functionality of the reactive precursors in reactive blending

    MACROMOLECULAR SYMPOSIA, Issue 1 2003
    Z. Yin
    Abstract PMMA containing 50 wt% of anthracene-labeled PMMA chains end-capped by a phthalic anhydride group (anth-PMMA-anh) has been melt blended at 180°C with PS containing 33 wt% of chains end-capped by an aliphatic primary amine (PS-NH2) and PS bearing 3.5 pendant amine groups (as an average) along the chains (PS-co-PSNH2), respectively. The reactive chains have been synthesized by atom transfer radical polymerization. Conversion of anth-PMMA-anh into PS-b-PMMA and PS-g-PMMA copolymers has been monitored by SEC with a UV detector. The interfacial reaction mainly occurs in the initial melting and softening stage (<1.0 min.), although at a rate which strongly depends on the number of reactive groups attached to PS chains, the higher conversion being observed for the PS-co-PSNH2 containing blends. The phase morphology depends on the architecture of the in-situ formed copolymer. Indeed, a coarser phase dispersion is observed in case of the graft copolymer compared to the diblock. [source]


    Interface Structure between Immiscible Reactive Polymers under Transreaction: a Monte Carlo Simulation

    MACROMOLECULAR THEORY AND SIMULATIONS, Issue 5 2005
    Xuehao He
    Abstract Summary: The interface structure between two immiscible melts, a polycondensate polymer A (e.g., polycarbonate, polyester or polyamide) and a polymer B, was studied by means of Monte Carlo simulations using the bond fluctuation model. Polymer B contained a reactive end group (e.g., OH, NH2 or COOH). Copolymers were generated in-situ at the interfaces by transreactions (alcoholysis, aminolysis or acidolysis), composing of various length of block A, depending on the position of transreaction in the polycondensate chain A. The content of copolymer at the interface increased with the time, particular fast at the early stage. Fragments of polymers A were released with an end group, reactive to polymers A. This resulted in the proceeding of internal transreactions. An asymmetric interface structure was formed. The simulation also showed that copolymers generated by interfacial transreactions increased the compatibility of the two polymers and enhanced the adhesion strength at the interfaces. [source]


    Real-time XRD Investigations During the Formation of Cu(IngGa)Se2 Thin Films

    PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, Issue 6 2005
    Frank Hergert
    Abstract Knowledge of the solid-state reactions providing the synthesis of the absorber material Cu(IngGa)Se2 well below its melting point is an essential prerequisite for the further optimization of the technologically relevant production processes. Therefore, powder XRD has been applied as nondestructive tool to follow chemical solide-state reactions in-situ. Subsequent Rietveld refinement provides the quantitative phase evolution time. [source]


    Interdiffusion in SiGe alloys with Ge contents of 25% and 50% studied by X-ray reflectivity

    PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 10 2008
    M. Medun
    Abstract The interdiffusion in SiGe alloys has been studied by X-ray specular reflectivity using ex-situ and in-situ annealing experiments. We report on the evolution of the Ge profile of strain-compensated Si/SiGe multilayers due to high temperature annealing. These multilayers were grown pseudomorphically and strain-symmetrized on relaxed Si0.75Ge0.25 and Si0.5Ge0.5 pseudosubstrates by molecular beam epitaxy at 330 °C. The multilayer structures were annealed at several temperatures around 590 °C and around 800 °C. From modelling the X-ray specular reflectivity scans at various stages of the interdiffused structures, we obtained interdiffusion coefficients resulting in the activation energy and the prefactor for interdiffusion corresponding to Si0.75Ge0.25 and Si0.5Ge0.5. The results obtained ex-situ for Si0.5Ge0.5 and in-situ for Si0.75Ge0.25 provide accurate values of diffusion parameters. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Improvement in crystalline perfection, piezo-electric property and optical transparency of in-situ poled Fe,LiNbO3 single crystals by post growth annealing and poling

    PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 2 2005
    G. C. Budakoti
    Abstract Crystalline perfection, piezoelectric response and optical transparency of in-situ poled Fe,LiNbO3 single crystals was studied. Very low angle grain boundaries and the variations in the piezoelectric charge constant d33 were observed in the as-grown crystals. Grain boundaries were successfully removed at higher annealing temperatures but the d33 value was decreased. Low crystalline perfection and d33 were observed after poling the annealed specimen. These parameters were improved by low temperature annealing followed by very slow cooling. FTIR spectra revealed that OH, and CO32, ionic defects were present in the as-grown crystals. The OH, ion concentration was reduced, CO32, ions were removed and optical quality was improved after annealing at higher temperatures. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Angle-resolved photoelectron spectroscopy study of the GaN(0001)-2×2 surface

    PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 7-8 2010
    P. Lorenz
    Abstract GaN(0001)-2×2 surfaces were investigated by angle-resolved ultraviolet photoelectron spectroscopy (ARUPS) as well as X-ray photoelectron spectroscopy (XPS). Contamination- and metal-free GaN thin films with a 2×2 reconstruction and a rms roughness below 1 nm were grown on 6H-SiC(0001) by plasma assisted molecular beam epitaxy (PAMBE). The valence band structure of the surface was investigated in-situ with ARUPS along the and directions of the surface Brillouin zone. Weak dispersive surface states related to the unreconstructed GaN surface or to the 2×2 superstructure as well as the dispersion of electron states of the bulk band structure are identified and compared to available results from density functional theory (DFT) calculations [Phys. Rev. B 77, 115120 (2008)] for GaN(0001). (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    In-situ IR synchrotron mapping ellipsometry on stimuli-responsive PAA-b-PS/PEG mixed polymer brushes

    PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 2 2010
    Dennis Aulich
    Abstract A binary polymer brush consisting of weak polyelectrolytes was investigated with infrared synchrotron mapping ellipsometry in-situ under the influence of different aqueous solutions. Thickness of the brush layer in dry state was ,15 nm. The brush, consisting of poly(ethylene glycol) and poly(acrylic acid)-b-poly(styrene) in a 50/50 composition was switched between two different states by changing the pH of the solution. An IR mapping ellipsometer at the IRIS beamline located at the BESSY II synchrotron facility in Berlin, Germany, was used for high lateral resolution in-situ measurements. The results show strong chemical changes in the brush layer due to COOH , COO, conversion of the PAA's carboxylic groups. Measurements with spot sizes of ,1 mm on different positions on the samples proved good homogeneity of the brush layer and the qualification of this method for investigation of ultrathin organic films in aqueous solutions in-situ with IR ellipsometry. (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    In-situ doping and implantation of GaN layers with Mn

    PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue S2 2009
    k Sofer
    Abstract In this paper we present a growth of Ga1,xMnxN layers by MOVPE and ion implantation of GaN layers with Mn. The Mn concentration detected by electron microprobe and PIXE was well below the solubility limit, ranging from 0.2 to 1.1 at.%. Implanted doses of Mn ions were in the range 1x1016 -5x1016 Mn atoms.cm,2 with energy of 330 keV. The analysis of the MOVPE deposition process of Ga1,xMnxN thin films revealed an unfavorable ratio between the apparent Mn concentration in the gas phase and its doping level in the deposited layer. On the other hand, the incorporation of Mn has a positive effect on the resulting surface morphology. The optimal deposition temperature of 1000 °C was found out as a compromise between the layer quality and Mn concentration. In both in-situ grown and implanted samples, a ferromagnetic component persisting up to room temperature and a prevailing paramagnetic phase were observed. The ferromagnetic moment observed in implanted samples was influenced by free carrier concentration in GaN layers which were used for implantation. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Studies on mechanical properties of sisal fiber/phenol formaldehyde resin in-situ composites

    POLYMER COMPOSITES, Issue 2 2009
    Qiuhong Mu
    Phenol formaldehyde resin (PF) reinforced with short sisal fibers (SF) were obtained by two methods, direct-mixing and polymerization filling. Impact and bending properties of resulting composites were compared. Under the same compression molding conditions, polymerization filled composites showed better mechanical properties than those of direct-mixed composites. The influences of fiber modifications on the mechanical properties of SF/PF in-situ (polymerization filled) composites have been investigated. Treated-SF-reinforced composites have better mechanical properties than those of untreated-SF-reinforced composites. The effects of SF on water absorption tendencies of SF/PF composites have also been studied. In addition, sisal/glass (SF/GF) hybrid PF composites of alkali-treated SF were prepared. Scanning electron microscopic studies were carried out to study the fiber-matrix adhesion. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers [source]


    Polyethylene-Palygorskite nanocomposite prepared via in situ coordinated polymerization

    POLYMER COMPOSITES, Issue 4 2002
    Junfeng Rong
    A polyethylene/palygorskite nano-composite (IPC composite) was prepared via an in-situ coordinated polymerization method, using TiCl4 supported on palygorskite fibers as catalyst and alkyl aluminum as co-catalyst. These composites were compared with those prepared by melt blending (MBC composites). It was found that in the IPC composites, nano-size fibers of palygorskite were uniformly dispersed in the polyethylene matrix. In contrast, in the MBC composites, the palygorskite was dispersed as large clusters of fibers. Regarding the mechanical properties of the IPCs, the tensile modulus increased and the elongation at break decreased with increasing fiber content, while the tensile strength passed through a maximum. The tensile strength and elongation at break were much smaller for the MBC composites. The final degree of crystallinity of the IPC composites decreased with increasing palygorskite content. Regarding the kinetics of crystallization, the ratio between the degree of crystallinity at a given time and the final one was a universal function of time. It was found that large amouns of gel were present in the IPC composites and much smaller amountes in the MBC composites. [source]


    A new method to quantify crazing in various environments

    POLYMER ENGINEERING & SCIENCE, Issue 3 2001
    Stephen B. Clay
    A new technique to quantify the rate of change of craze density in stressed transparent polymeric plates of polycarbonate was developed. The samples are placed under a creep load in a controlled temperature and humidity environment, during which the craze density is measured with a reflective imaging system at a defined rate. It has been shown that this unique method for crazy detection and quantification has sufficient repeatability to generate statistically acceptable data, obeying currently used, the method described in the present work is an in-situ, quantitative, non-subjective, direct measurement of craze density. [source]