Home About us Contact | |||
Insecticides
Kinds of Insecticides Terms modified by Insecticides Selected AbstractsSTUDIES ON SELECTIVE TOXICITY OF SIX INSECTICIDES BETWEEN GREEN PEACH APHID AND LADYBIRDSINSECT SCIENCE, Issue 2 2002XUE Ming Abstract, The selective toxicity of six kinds of insecticides, including imidacloprid, imidacloprid + synergist (SV1), fenvalerate, endosulfan, methomyl and dimethoate, between the green peach aphid (Myzus persicae Sulzer) and two species of ladybirds (Coccinella septempunctata Linnaeus and Propylaea japonica Thunbery), was investigated in the laboratory. The reults showed that both imidacloprid WP and imidacloprid + synergist (SVl) EC possessed the highest toxicity to the aphids. Between C. septempunctata and M. persicae and between P. japonica and M. persicae, the selective toxicity ratios (STRs) of imidacloprid WP, imidacloprid+ synergist (SV1) EC and endosulfan EC were 37.6 and 13.0, 9.84 and 7.75, 54.0 and 7.28 respectively. All of them showed rather high selective toxicity. The STRs of fenvalerate EC, dimethoate EC and methomyl EC were all very low, ranging from 0.02 to 0.21, indicating their low degree of safety to the two species of ladybids. The results demomarated that imidacloprid WP and imidacloprid + SVl EC not only had rather high toxicity to the aphids, but also reduced strikingly the reproduction rate and fecundity of the survival aphids. Insecticides can induce the relative fitness of insects decrease. Among the six insecticides tested with M. persicae, the following were insecticides and the order of induction was: imidacloprid + SV1 imidacloprid endosulfan methomyl fenvalerate > dimethoate. [source] Review of the validation of models used in Federal Insecticide, Fungicide, and Rodenticide Act Environmental exposure assessmentsENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 8 2002Russell L. Jmones Abstract The first activity of the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) Environmental Model Validation Task Force, established to increase confidence in the use of environmental models used in regulatory assessments, was to review the literature information on validation of the pesticide root zone model (PRZM) and the groundwater loading effects of agricultural management systems (GLEAMS). This literature information indicates that these models generally predict the same or greater leaching than observed in actual field measurements, suggesting that these models are suitable for use in regulatory assessments. However, additional validation research conducted using the newest versions of the models would help improve confidence in runoff and leaching predictions because significant revisions have been made in models over the years, few of the literature studies focused on runoff losses, the number of studies having quantitative validation results is minimal, and modelers were aware of the field results in most of the literature studies. Areas for special consideration in conducting model validation research include improving the process for selecting input parameters, developing recommendations for performing calibration simulations, devising appropriate procedures for keeping results of field studies from modelers performing simulations to validate model predictions while providing access for calibration simulations, and developing quantitative statistical procedures for comparing model predictions with experimental results. [source] Test substance characterization for the EPA: what you've always wanted to know but were afraid to ask,QUALITY ASSURANCE JOURNAL, Issue 3-4 2007William Barta Abstract The Society of Quality Assurance (SQA) GLP Specialty Section, a member of the SQA Regulatory Forum, is a group of participants from the regulated community which provides insight and guidance to our membership and the regulated community. The Specialty Section has encountered several participants who want to know what types of information and data are needed during an inspection by the US EPA's Office of Enforcement and Compliance Assurance (OECA). The OECA is responsible for monitoring studies submitted to the Office of Pesticide Programs in support of pesticide registrations as defined under the Federal Insecticide, Fungicide and Rodenticide Act (FIFRA). All submitted studies are to be conducted according to the FIFRA US Good Laboratory Practice Standards (GLPS). The GLPS contain specific language concerning the characterization of test, control and reference substances used in these studies. This article clarifies those requirements and provides perspective on the EPA expectations on meeting those requirements. The topics of discussion include: regulatory requirements responsibilities of the testing facility management, study director, Quality Assurance Unit and the sponsor preparing for an inspection overview of data to be made available at the time of inspection composition of a Certificate of Analysis. Copyright © 2008 John Wiley & Sons, Ltd. [source] Successful Organ Transplantation from Donors Poisoned with a Carbamate InsecticideAMERICAN JOURNAL OF TRANSPLANTATION, Issue 6 2010J. H. Garcia Currently, liver transplantation is the only option for patients with end-stage liver disease. In Brazil, the mortality rate on the waiting list is about 25%. Multiple strategies to expand the donor pool are being pursed, however, grafts from poisoned donors are rarely used. This report documents successful liver, kidney and heart transplantations from four female donors who suffered brain death by hypoxia despite cardiopulmonary resuscitation following Aldicarb exposure ([2-methyl-2-(methylthio)propionaldehyde O-(methylcarbamoyl)-oxime]). The success rate of 12 grafts from four donors poisoned by Aldicarb was 91% 6 months after transplantation. Poisoned patients are another pool of organ donors who at present are probably underused by transplantation services. More studies are necessary to confirm the safety for the recipients. [source] Insecticides with novel modes of action: Mechanism, selectivity and cross-resistanceENTOMOLOGICAL RESEARCH, Issue 3 2007Isaac ISHAAYA Abstract Efforts have been made during the past two decades to develop insecticides with selective properties that act specifically on biochemical sites present in particular insect groups, but whose properties differ from other insecticides. This approach has led to the discovery of compounds that affect the hormonal regulation of molting and developmental processes in insects; for example, ecdysone agonists, juvenile hormone mimics and chitin synthesis inhibitors. In addition, compounds that selectively interact with the insect nicotinic acetylcholine receptor, such as imidacloprid, acetamiprid and thiamethoxam, have been introduced for the control of aphids, whiteflies and other insect species. Natural products acting selectively on insect pests, such as avermectins, spinosad and azadirachtin, have been introduced for controlling selected groups of insect pests. Compounds acting on the nervous site that controls the sucking pump of aphids and whiteflies, such as pymetrozine, or respiration, such as diafenthiuron, have been introduced for controlling sucking pests. All the above compounds are important components in pest and resistance management programs. [source] Chemical control; Insecticides and resistanceENTOMOLOGICAL RESEARCH, Issue 2007Article first published online: 7 AUG 200 First page of article [source] STUDIES ON SELECTIVE TOXICITY OF SIX INSECTICIDES BETWEEN GREEN PEACH APHID AND LADYBIRDSINSECT SCIENCE, Issue 2 2002XUE Ming Abstract, The selective toxicity of six kinds of insecticides, including imidacloprid, imidacloprid + synergist (SV1), fenvalerate, endosulfan, methomyl and dimethoate, between the green peach aphid (Myzus persicae Sulzer) and two species of ladybirds (Coccinella septempunctata Linnaeus and Propylaea japonica Thunbery), was investigated in the laboratory. The reults showed that both imidacloprid WP and imidacloprid + synergist (SVl) EC possessed the highest toxicity to the aphids. Between C. septempunctata and M. persicae and between P. japonica and M. persicae, the selective toxicity ratios (STRs) of imidacloprid WP, imidacloprid+ synergist (SV1) EC and endosulfan EC were 37.6 and 13.0, 9.84 and 7.75, 54.0 and 7.28 respectively. All of them showed rather high selective toxicity. The STRs of fenvalerate EC, dimethoate EC and methomyl EC were all very low, ranging from 0.02 to 0.21, indicating their low degree of safety to the two species of ladybids. The results demomarated that imidacloprid WP and imidacloprid + SVl EC not only had rather high toxicity to the aphids, but also reduced strikingly the reproduction rate and fecundity of the survival aphids. Insecticides can induce the relative fitness of insects decrease. Among the six insecticides tested with M. persicae, the following were insecticides and the order of induction was: imidacloprid + SV1 imidacloprid endosulfan methomyl fenvalerate > dimethoate. [source] Persistent Organic Pollutants in Fish Oil Supplements on the Canadian Market: Polychlorinated Biphenyls and Organochlorine InsecticidesJOURNAL OF FOOD SCIENCE, Issue 1 2009Dorothea F.K. Rawn ABSTRACT:, Fish and seal oil dietary supplements, marketed to be rich in omega-3 fatty acids, are frequently consumed by Canadians. Samples of these supplements (n,= 30) were collected in Vancouver, Canada, between 2005 and 2007. All oil supplements were analyzed for polychlorinated biphenyls (PCBs) and organochlorine insecticides (OCs) and each sample was found to contain detectable residues. The highest ,PCB and ,DDT (1,1,1-trichloro-di-(4-chlorophenyl)ethane) concentrations (10400 ng/g and 3310 ng/g, respectively) were found in a shark oil sample while lowest levels were found in supplements prepared using mixed fish oils (anchovy, mackerel, and sardine) (0.711 ng ,PCB/g and 0.189 ng ,DDT/g). Mean ,PCB concentrations in oil supplements were 34.5, 24.2, 25.1, 95.3, 12.0, 5260, 321, and 519 ng/g in unidentified fish, mixed fish containing no salmon, mixed fish with salmon, salmon, vegetable with mixed fish, shark, menhaden (n,= 1), and seal (n,= 1), respectively. Maximum concentrations of the other OCs were generally observed in the seal oil. The hexachlorinated PCB congeners were the dominant contributors to ,PCB levels, while ,DDT was the greatest contributor to organochlorine levels. Intake estimates were made using maximum dosages on manufacturers' labels and results varied widely due to the large difference in residue concentrations obtained. Average ,PCB and ,DDT intakes were calculated to be 736 ± 2840 ng/d and 304 ± 948 ng/d, respectively. [source] News from the front line: reports from the Global Workshop on the Stewardship of Neonicotinoid Insecticides, Honolulu, Hawaii, 5,6 June 2008PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 11 2008Ralf Nauen No abstract is available for this article. [source] Residual toxicity of two insecticides on three field populations of Lygus lineolaris (Hemiptera: Miridae) collected along the St Lawrence valley in eastern CanadaPEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 5 2007Dominique Fleury Abstract Insecticides are still the single main pest control method employed today by most growers to mitigate damage done by the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois) (Hemiptera: Miridae). In eastern Canada, the complex agricultural ecosystem, which may be described as a mosaic of farmlands dispersed among natural habitats (forest, prairies), allows tarnished plant bug adults to fly and move from sprayed to non-sprayed areas. In 2004 (late August to early September), three populations of L. lineolaris were collected from three mixed vegetation strips adjacent to orchards and vineyards along the St Lawrence valley: the Niagara Peninsula (Ontario), Dunham (Quebec) and La Pocatière (Quebec). Assays were done in the laboratory by confining adults in glass vials coated with dried residues. The estimated LC50 values for the three populations varied from 11.2 to 16.8 × 10,5 g L,1 for azinphos-methyl and from 0.8 to 1.4 × 10,5 g L,1 for cypermethrin. In contrast to the Mississippi delta, no tolerance to insecticides was found in the populations collected. Possible explanations for this non-tolerance to insecticides includes a very low selection pressure as a result of the reduced number of insecticide treatments done in the context of the diversified agricultural landscapes encountered in eastern Canada which allow movements of adults from treated to non-treated areas. Copyright © 2007 Society of Chemical Industry [source] Insecticide resistance in vector mosquitoes in ChinaPEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 11 2006Feng Cui Abstract Because of their special behaviour, physiology and close relationship with humans, mosquitoes act as one of the most important vectors of human diseases, such as filariasis, Japanese encephalitis, dengue and malaria. The major vector mosquitoes are members of the Culex, Aedes and Anopheles genera. Insecticides play important roles in agricultural production and public health, especially in a country with a huge human population, like China. Large quantities of four classes of insecticides, organochlorines, organophosphates, carbamates and pyrethroids, are applied annually to fields or indoors in China, directly or indirectly bringing heavy selection pressure on vector populations. The seven major species of vector mosquito in China are the Culex pipiens L. complex, C. tritaeniorhynchus Giles, Anopheles sinensis Wied., A. minimus Theobald, A. anthropophagus Xu & Feng, Aedes albopictus (Skuse) and Ae. aegypti L., and all have evolved resistance to all the above types of insecticide except the carbamates. The degree of resistance varies among mosquito species, insecticide classes and regions. This review summarizes the resistance status of these important vector mosquitoes, according to data reported since the 1990s, in order to improve resistance management and epidemic disease control, and to communicate this information from China to the wider community. Copyright © 2006 Society of Chemical Industry [source] Acute occupational pesticide-related illness in the US, 1998,1999: Surveillance findings from the SENSOR-pesticides program,,AMERICAN JOURNAL OF INDUSTRIAL MEDICINE, Issue 1 2004Geoffrey M. Calvert MD Abstract Background Concern about the adverse public health and environmental effects of pesticide use is persistent. Recognizing the importance of surveillance for acute occupational pesticide-related illness, we report on surveillance for this condition across multiple states. Methods Survey data collected between 1998 and 1999 were obtained from the seven states that conduct acute occupational pesticide-related illness surveillance as part of the Sentinel Event Notification System for Occupational Risks (SENSOR) program. Data were collected by these state programs in a standardized manner and analyzed. Acute occupational pesticide-related illness incidence rates for those employed in agriculture and those employed in non-agricultural industries were also calculated. Results Between 1998 and 1999, a total of 1,009 individuals with acute occupational pesticide-related illness were identified by states participating in the SENSOR-pesticides program. The mean age was 36 years, and incidence rates peaked among 20,24 year-old workers. The overall incidence rate was 1.17 per 100,000 full time equivalents (FTEs). The incidence rate among those employed in agriculture was higher (18.2/100,000 FTEs) compared to those employed in non-agricultural industries (0.53/100,000 FTEs). Most of the illnesses were of low severity (69.7%). Severity was moderate in 29.6% of the cases, and high in four cases (0.4%). Three fatalities were identified. Insecticides were responsible for 49% of all illnesses. Conclusions Surveillance is an important tool to assess acute pesticide-related illness, and to identify associated risk factors. Our findings suggest that these illnesses continue to be an important occupational health problem, especially in agriculture. As such, greater efforts are needed to prevent acute occupational pesticide-related illness. Am. J. Ind. Med. 45:14,23, 2004. Published 2003 Wiley-Liss, Inc. [source] Evaluation of existing and new insecticides including spirotetramat and pyridalyl to control Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) on peppers in QueenslandAUSTRALIAN JOURNAL OF ENTOMOLOGY, Issue 2 2010Iain R Kay Abstract Insecticides are used by growers to control Frankliniella occidentalis (western flower thrips) in Australian vegetable crops. However, limited information was available on the efficacy of some insecticides used against F. occidentalis and data on new insecticides that could be included in a resistance management program were required. The efficacy of 16 insecticides in controlling F. occidentalis was tested in four small plot trials in chillies and capsicums. Spinosad, fipronil and methamidophos were effective against adults and larvae. Spirotetramat had no efficacy against adults but was very effective against larvae. Pyridalyl was moderately effective against larvae. Methidathion showed limited effectiveness. Abamectin, amorphous silica, bifenthrin, chlorpyrifos, dimethoate, emamectin benzoate, endosulfan, imidacloprid, methomyl and insecticidal soap were not effective. Laboratory bioassays on F. occidentalis collected from the field trials showed resistance to bifenthrin but not to the other insecticides tested. The trials demonstrated that some insecticides permitted for use against F. occidentalis are not effective and identified a number of insecticides, including the new ones spirotetramat and pyridalyl, that are effective and that could be used to manage the pest within a resistance management program. [source] Novel and Efficient Catalytic Route for the Syntheses of Tetrahydrofurans Useful in the Preparation of Neonicotinoid Insecticides.CHEMINFORM, Issue 35 2005Srinagesh Kumar Potluri Abstract For Abstract see ChemInform Abstract in Full Text. [source] The Design and Synthesis of ,-Trifluoromethylenol Phosphates as Potential Insecticides.CHEMINFORM, Issue 39 2003Yixiang Ding Abstract For Abstract see ChemInform Abstract in Full Text. [source] Scale dependence of effective specialization: its analysis and implications for estimates of global insect species richnessDIVERSITY AND DISTRIBUTIONS, Issue 1 2007Jon C. Gering ABSTRACT Estimates of global insect species richness are sometimes based on effective specialization, a calculation used to estimate the number of insect species that is restricted to a particular tree species. Yet it is not clear how effective specialization is influenced by spatial scale or characteristics of the insect community itself (e.g. species richness). We investigated scale dependence and community predictors of effective specialization using 15,907 beetles (583 species) collected by insecticide fogging from the crowns of 96 trees (including 32 Quercus trees) located in Ohio and Indiana. Trees were distributed across 24 forest stands (,1 ha) nested within six sites (,10,100 km2) and two ecoregions (> 1000 km2). Using paired-sample randomization tests, we found that effective specialization (fk) exhibited negative scale-dependence in early (May,June 2000) and late (August,September 2000) sampling periods. Our average effective specialization (F) values , those that are comparable to Erwin's (1982) estimates , ranged from 19% to 97%, and increased as spatial scale decreased. We also found that beetle species richness and the number of shared beetle species across host trees were significant and consistent negative predictors of F. This shows that increases in spatial scale, species richness, and the number of trees (and/or tree species) all coincide with decreases in effective specialization. Collectively, our results indicate that estimates of global insect species richness based on effective specialization at a single spatial scale are overestimating the magnitude of global insect species richness. We propose that scale dependence should be promoted to a central concept in the research program on global estimates of species richness. [source] Impact of spinosad on ichneumonid-parasitized Choristoneura rosaceana larvae and subsequent parasitoid emergenceENTOMOLOGIA EXPERIMENTALIS ET APPLICATA, Issue 2 2010J.E. Cossentine Abstract The impact of low levels of spinosad on the obliquebanded leafroller, Choristoneura rosaceana Harris (Lepidoptera: Tortricidae), and the koinobiont endoparasitoid, Apophua simplicipes Cresson (Hymenoptera: Ichneumonidae), was assessed when the parasitoid was in the larval stage within second- and fourth-instar hosts. These are developmental stages that would be exposed to spring orchard treatments of the insecticide. Oral spinosad LC50 levels for unparasitized obliquebanded leafroller hosts were <1% of the recommended orchard treatment levels. Apophua simplicipes survival was significantly reduced within parasitized spinosad-treated second- and fourth-instar larval hosts. Both the leafroller host and parasitoid were much more susceptible (ca. 65-fold) to spinosad when larval hosts fed on spinosad-treated leaf material as opposed to being treated topically. When hosts were exposed to extremely low doses of spinosad, a small percentage of parasitoids was able to survive to emerge as adults. These laboratory trials predict that applications of spinosad may reduce biological control of C. rosaceana populations by ichneumonid endoparasitoids developing within treated hosts. [source] Factors influencing the effectiveness of an attracticide formulation against the Oriental fruit moth, Grapholita molestaENTOMOLOGIA EXPERIMENTALIS ET APPLICATA, Issue 2 2004Maya L. Evenden Abstract An attracticide formulation, LastCallÔOFM, was tested against the Oriental fruit moth Grapholita molesta (Busck) (Lepidoptera: Tortricidae) in replicated small plot field trials in apple, Malus domestica (Borkhausen), orchards in South-eastern Pennsylvania, USA. Attracticide treatments were applied using a calibrated hand pump, and treated plots were compared to similar untreated plots. Male moth activity was monitored using virgin female-baited traps, and the potential for reduction in mating activity was assessed using sentinel virgin females. A comparison of application rates showed that 1500 droplets per ha of the attracticide formulation was as effective as 3000 droplets per ha, and both application rates reduced captures in synthetic pheromone-baited traps for prolonged periods. Droplets placed either at high or low positions within the canopy significantly reduced trap capture and mating with sentinel females. In addition, the only sentinel females that mated in the treated plots were located in the untreated portion of the tree canopy. Mate finding behaviour was equally disrupted by formulations with and without insecticide. Therefore, under the test conditions, the mechanism by which the attracticide formulation worked was by disruption of male orientation, and not by the removal of males due to insecticide poisoning. Two field cage experiments tested the impact of population density on the competitiveness of the attracticide formulation compared to virgin females. A significant proportion of males were captured in female-baited traps at the highest female-to-droplet ratio tested. Equal proportions of males were captured in attracticide-baited traps at male moth densities of 10, 20, 40, and 80 males per cage. These results clarify some of the factors influencing the effectiveness and possible mechanisms of an attracticide management tactic against the Oriental fruit moth. [source] Effects of hunger level and nutrient balance on survival and acetylcholinesterase activity of dimethoate exposed wolf spidersENTOMOLOGIA EXPERIMENTALIS ET APPLICATA, Issue 3 2002Lars-Flemming Pedersen Abstract The influence of two nutritional factors (food quantity and quality) on the responses of a wolf spider, Pardosa prativaga (L.K.), to a high dose of the insecticide dimethoate, was investigated in a fully factorial experimental design. Spider groups with different (good and bad) nutrient balance were created by feeding them fruit flies of either high or low nutrient content for 28 days. Both groups were then split into satiated and 14 days starved subgroups. Each of these was further divided into insecticide treated and control halves. Survivorship and acetylcholinesterase (AChE) activity measured on the survivors were used as response variables. Survivorship after topical dimethoate exposure (LD50; 48 h) was influenced by spider body weight, nutrient balance, and starvation. Furthermore, AChE activity was significantly inhibited by dimethoate exposure. A significant interaction between nutrient balance, starvation, and dimethoate exposure revealed synergistic effects of starvation and nutrient imbalance on AChE inhibition by dimethoate in surviving spiders. These results show that the tolerance of non-target arthropods to dimethoate may vary depending on the nutritional history of the animal. [source] Short-term responses by the German cockroach, Blattella germanica, to insecticidal baits: behavioural observationsENTOMOLOGIA EXPERIMENTALIS ET APPLICATA, Issue 1 2002Stephen A. Jones Abstract Toxicants may cause insects to avoid a bait, and yet bait efficacy is dependent upon insects ingesting it in adequate quantities. Amounts ingested are, in turn, determined by meal frequency, meal durations and ingestion rate within meals, but to date no report has been made of these variables for domestic cockroaches. We report an experiment in which sixth instar German cockroach, Blattella germanica, nymphs were initially able to self-select their protein and carbohydrate intake independently, then daily at the start of the scotophase some insects had their choice of foods replaced by a single treatment food, which varied through the presence or absence of protein, carbohydrate, and insecticide. Insect behaviour was recorded for the following 5 h, and the data were subsequently subjected to bout analysis in order to identify discrete meals. The age of insects in days on first exposure to a treatment food (,age') and the amount of food eaten in the observation period were both recorded and included in the analysis. Amounts eaten were affected by insect age and food nutrient content, but not by the presence of insecticide. Toxicant effects were, however, seen on average meal duration and meal frequency, in interactions with age and food nutrient effects. These results suggest ways in which direct observations of behaviours may lead to improved bait design. [source] Seasonal and geographical toxicity of Indoxacarb against Helicoverpa armigera and influence of different host plants against Indoxacarb in India, 2005,2007ENTOMOLOGICAL RESEARCH, Issue 1 2009Basweshwar S. GHODKI Abstract Indoxacarb, an oxadiazine insecticide, was evaluated for its effectiveness against Helicoverpa armigera collected from selected locations in India. Determination of Indoxacarb efficacy was done using a log-dose probit (LDP) bioassay against third instars collected from cotton (Gossypium arborium) fields near Akola, India. Monthly levels of toxicity of Indoxacarb were determined from July 2005 to March 2007. The maximum tolerance level of Indoxacarb was reported for the Amaravati strain (5.09 p.p.m.) and the minimum tolerance level for the Fatehbad strain (0.22 p.p.m.). Seasonal monitoring of Indoxacarb toxicity revealed an increased trend in tolerance from July 2005 to February 2006, which decreased from March 2006. The LC50 of Indoxacarb was 2.71 p.p.m. in July 2005 and 17.14 p.p.m. in February 2006. During 2006,2007, the LC50 was 3.84 p.p.m. at the start of the season and in March 2007 it was 13.51 p.p.m. The minimum LC50 of Indoxacarb was reported for H. armigera larvae fed on Legasca spp. (1.62 p.p.m.) and the maximum LC50 was reported for H. armigera reared on chickpea (Cicer arietium) (8.45 p.p.m.). LC50 of 2.73 and 4.56 p.p.m. were reported for H. armigera fed on cotton (Gossypium arborium) and pigeonpea (Cajanus cajan), respectively. [source] Synergist efficacy of piperonyl butoxide with deltamethrin as pyrethroid insecticide on Culex tritaeniorhynchus (Diptera: Culicidae) and other mosquitoe speciesENVIRONMENTAL TOXICOLOGY, Issue 1 2009M. R. Fakoorziba Abstract Continuous and indiscriminate use of pesticides, especially in tropical countries for public health or agriculture purpose, has led many vector populations to become resistant to organochlorides, organophosphates, and even to carbamates and pyrethroids. Development of resistance by a vector population has been one of the reasons for the failure of the control measures in many countries. This investigation demonstrates the efficacy of piperonyl-butoxide (PBO) with deltamethrin, as pyrethroid insecticide, against the field-collected mosquitoe larvae of five species, Aedes aegypti, Anopheles culicifacies, An. stephensi, An. vagus, and Culex quinqufasciatus, and two morphological variants of Cx. tritaeniorhynchus (type A from grand pools of Mysore city and type B from rice fields of Mandya district). For testing the synergistic effect of PBO, stock solutions of deltamethrin and PBO were mixed in 1:6 ratio. The synergistic ratio and the percent suppression in deltamethrin tolerance were calculated by using LC50 values. From the results, it is clear that, PBO is an effective synergist with deltamethrin against all of species undertaken in this investigation. So, it is suggested that PBO is a good synergist in this area for decreasing the use of pesticides in environment in vector control. © 2008 Wiley Periodicals, Inc. Environ Toxicol, 2009. [source] Development of an in vitro blood,brain barrier model to study the effects of endosulfan on the permeability of tight junctions and a comparative study of the cytotoxic effects of endosulfan on rat and human glial and neuronal cell culturesENVIRONMENTAL TOXICOLOGY, Issue 3 2006Melissa P. L. Chan Abstract Endosulfan, an organochlorine (OC) insecticide that belongs to the cyclodiene group, is one of the most commonly used pesticides to control pests in vegetables, cotton, and fruits. Porcine brain microvascular endothelial cells were used to develop a model to study the effects of endosulfan on the permeability of tight junctions in the blood,brain barrier (BBB). BBB permeability, measured as transendothelial electrical resistance, decreased in a dose- and time-dependent manner when treated with ,-endosulfan, ,-endosulfan, or endosulfan sulfate. Cytotoxicity testing revealed that the three endosulfans did not cause cell death at concentrations of 10 ,M and below. The ratio of the average permeability of the filter-grown endothelial cell monolayer to 14C-endosulfan (Pe) going from the outer to the inner compartments with that going from the inner to the outer compartments was approximately 1:1.2,2.1 after exposure to concentrations of 0.01,10 ,M. ,-Endosulfan, ,-endosulfan, and endosulfan sulfate had cytotoxic effects on rat glial (C6) and neuronal (PC12) cell cultures as well as on human glial (CCF-STTG1) and neuronal (NT2) cell cultures. The effects of ,-endosulfan were highly selective, with a wide range of LC50 values found in the different cultures, ranging from 11.2 ,M for CCF-STTG1 cells to 48.0 ,M for PC12 cells. In contrast, selective neurotoxicity was not so manifest in glial and neuronal cell cultures after exposure to endosulfan sulfate, as LC50 values were in the range of 10.4,21.6 ,M. CCF-STTG1 cells were more sensitive to ,-endosulfan and endosulfan sulfate, whereas NT2 cells were more sensitive to ,-endosulfan. © 2006 Wiley Periodicals, Inc. Environ Toxicol 21: 223,235, 2006. [source] Evaluated fate and effects of atrazine and lambda-cyhalothrin in vegetated and unvegetated microcosms,,ENVIRONMENTAL TOXICOLOGY, Issue 5 2005J. L. Bouldin Abstract Contaminants such as nutrients, metals, and pesticides can interact with constructed wetlands and existing drainage ditches used as agricultural best-management practices. Our research has shown that the presence of macrophytes and a hydrologic regime aid in the transfer and transformation of pesticides associated with agricultural runoff. This study consisted of application of both atrazine (triazine herbicide) and lambda-cyhalothrin (pyrethroid insecticide) to vegetated and unvegetated microcosms in order to measure the fate and effects of pesticides applied at suggested field application rates. Exposures focused on monocultures of Ludwigia peploides (water primrose) and Juncus effusus (soft rush). Pesticide sorption was evident through concentrations of atrazine and lambda-cyhalothrin in plant tissue as high as 2461.4 and 86.50 ,g/kg, respectively. Toxicity was measured in water from unvegetated microcosms for 28 days and in Chironomus tentans (midge larvae) exposed to sediment collected from 3 h to 56 days in microcosms receiving the pesticide combination. The comparative survival of test organisms in this study suggests that effective mitigation of pesticides from runoff can depend on the macrophyte contact and vegetative attributes associated with ditches. © 2005 Wiley Periodicals, Inc. Environ Toxicol 20: 487,498, 2005. [source] Persistent inhibition of human natural killer cell function by ziram and pentachlorophenolENVIRONMENTAL TOXICOLOGY, Issue 4 2005Thyneice R. Taylor Abstract Ziram is a currently used agricultural fungicide. It is also used as an additive in the production of latex gloves. Because of these uses, there is a potential for human exposure to this compound. Pentachlorophenol (PCP) has been used as an insecticide, fungicide, disinfectant, and ingredient in antifouling paints. Currently, it is used as a wood preservative for power-line poles and fence posts. Measurable levels of PCP have been detected in human blood and urine. In previous studies we demonstrated that both these compounds could cause very significant inhibition of the tumor-killing function of human natural killer (NK) cells. NK lymphocytes play a central role in immune defense against viral infection and the formation of primary tumors. So interference with their function could increase the risk of tumor development. In the present study we examined the effects of exposure to ziram or PCP of brief duration (1 h) on the ability of NK cells to destroy tumor cells. NK cells were exposed to either ziram (5,0.5 ,M) or PCP (10,5 ,M) for 1 h followed by 0 h, 24 h, 48 h, or 6 days in compound-free media and then were tested for the ability to lyse as well as to bind tumor cells. A 1-h exposure to as little as 2.5 ,M ziram decreased the ability of NK cells to lyse target tumor cells, which persisted up to 6 days following exposure. The loss of lytic function for from 24 h to 6 days following exposure was accompanied by a comparable loss of NK capacity to bind tumor cells. Exposure to 10 ,M PCP for 1 h caused a progressive loss (greater than 80%) of lytic function within 6 days of exposure. In contrast to ziram, PCP exposure caused no accompanying loss of binding function. © 2005 Wiley Periodicals, Inc. Environ Toxicol 20: 418,424, 2005. [source] Impact of a benzoyl urea insecticide on aquatic macroinvertebrates in ditch mesocosms with and without non-sprayed sections,ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 10 2009Theo C.M. Brock Abstract The long-term response, including recovery, of aquatic macroinvertebrates to short-term insecticide exposure may be affected by the presence of uncontaminated refuges in the stressed ecosystem. Experimental ditches were used to study the influence of non-sprayed ditch sections regarding the ecotoxicological effects on and the recovery of macroinvertebrates following treatment with the insecticide lufenuron. The treatment regimes differed in the proportion of the ditch (0, 33, 67, and 100% of surface area) that was sprayed to reach a lufenuron concentration of 3 ,/L in the water column of the sprayed ditch section. The magnitude and duration of effects on macroinvertebrates, and on arthropods in particular, were higher when a larger proportion of the ditch was treated. Initially, more pronounced responses were observed for bivoltine and multivoltine insects and macrocrustaceans than for univoltine and semivoltine arthropods. Most macroinvertebrate arthropods showed delayed responses, with maximum treatment-related effects observed two to six weeks after lufenuron application. This latency of effects can be explained by the mode of action of lufenuron, involving inhibition of chitin synthesis, which affects arthropod molting and metamorphosis. The observed effects were short-lived only in those ditches where 33% of the surface area was sprayed. In the ditches where 67 and 100% of the surface area was sprayed, some insects and macrocrustaceans showed long-term effects. In the 100% sprayed ditches in particular, the treatment-related reduction in arthropods resulted in indirect effects, such as an increase in snails, and later in an increase in the ephemeropteran Cloeon dipterum, probably because of an increase in periphyton, and release from competition and predation. Effects that are most likely indirect also were observed for Oligochaeta, Hirudinea, and the flatworm Mesostoma sp. [source] Clutch morphology and the timing of exposure impact the susceptibility of aquatic insect eggs to esfenvalerateENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 8 2008Katherine R. Palmquist Abstract We investigated Baetis spp. (mayfly), Hesperoperla pacifica (stonefly), and Brachycentrus americanus (caddisfly) susceptibility at the egg stage to esfenvalerate, a synthetic pyrethroid insecticide. Eggs were obtained from the field or from field-collected gravid females at sites near Corvallis (OR, USA) and the Metolius River at Camp Sherman (OR, USA) for static exposures under controlled conditions for temperature and light. Eggs were exposed to esfenvalerate for 48 h at concentrations ranging from 0.025 to 4.0 ,g/L. No effect on mortality or posthatch growth was detected in H. pacifica eggs exposed to esfenvalerate concentrations up to 1.0 ,g/L. Exposure to 0.07 ,g/L of esfenvalerate, however, caused a significant increase in Baetis spp. egg mortality, and exposure of near-eclosion eggs to lower concentrations (0.025 and 0.05 ,g/L) resulted in behavioral effects and reduced survivorship in newly hatched Baetis nymphs. Early stage B. americanus eggs were 10-fold more sensitive to esfenvalerate when removed from the gelatinous clutch before exposure, an indication that the gelatin affords protection from toxicant exposure. Exposures of near-hatch B. americanus clutches to esfenvalerate concentrations ranging between 0.035 and 0.2 ,g/L, however, resulted in significant clutch death within clutches resulting from behavioral aberrations of first-instar larvae. The results of the present study suggest that aquatic insect egg clutch morphology can be a strong influence on susceptibility of embryos to esfenvalerate exposure. [source] Responses of zooplankton in lufenuron-stressed experimental ditches in the presence or absence of uncontaminated refuges,ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 6 2008Patricia López-Mancisidor Abstract Outdoor experimental ditches were used to evaluate the influence of untreated refuges on the recovery of zooplankton communities following treatment with the fast-dissipating insecticide lufenuron. Each experimental ditch was divided into three sections of the same surface area. The treatments differed in the proportion of ditch (0, 33, 67, and 100% of the surface area) to which the insecticide was applied at the same nominal treatment (3 ,g/L). During the first week postapplication, a barrier was placed between treated and untreated ditch sections. The untreated sections were included to provide a source of organisms for recovery of affected zooplankton populations in the treated sections of the ditch after the removal of the barrier. Cyclopoida were the most affected by lufenuron treatment, followed by Daphnia gr. galeata. These and other direct effects of treatment on larvae of the phantom midge Chaoborus spp. resulted in clear indirect effects on populations of Calanoida, Ceriodaphnia, and Rotifera. Overall, faster recovery of the zooplankton community was observed in the treated sections of ditches that were sprayed for a smaller proportion of their surface area. Nevertheless, individual zooplankton populations showed considerable differences in rate of recovery. Cyclopoida showed a relatively slow rate of recovery even in the partially treated ditches. Daphnia gr. galeata recovered more rapidly in treated ditch sections in the presence of unsprayed ditch sections, illustrating the potential influence of unexposed refuges. Furthermore, the presence of refuges most likely dampened the magnitude and duration of indirect effects in the ditches treated with lufenuron. [source] Effects of insecticide exposure on feeding inhibition in mayflies and oligochaetesENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 8 2007Alexa C. Alexander Abstract The present study examined the effects of pulse exposures of the insecticide imidacloprid on the mayfly, Epeorus longimanus Eaton (Family Heptageniidae), and on an aquatic oligochaete, Lumbriculus variegatus Müller (Family Lumbriculidae). Pulse exposures of imidacloprid are particularly relevant for examination, because this insecticide is relatively soluble (510 mg/L) and is most likely to be at effect concentrations during runoff events. Experiments examined the recovery of organisms after a 24-h pulse exposure to imidacloprid over an environmentally realistic range of concentrations (0, 0.1, 0.5, 1, 5, and 10 ,g/L). Effects on feeding were measured by quantifying the algal biomass consumed by mayflies or foodstuffs egested by oligochaetes. Imidacloprid was highly toxic, with low 24-h median lethal concentrations (LC50s) in early mayfly instars (24-h LC50, 2.1 ± 0.8 ,g/L) and larger, later mayfly instars (24-h LC50, 2.1 ± 0.5 ,g/L; 96-h LC50, 0.65 ± 0.15 ,g/L). Short (24-h) pulses of imidacloprid in excess of 1 ,g/L caused feeding inhibition, whereas recovery (4 d) varied, depending on the number of days after contaminant exposure. In contrast to mayflies, oligochaetes were relatively insensitive to imidacloprid during the short (24-h) pulse; however, immobility of oligochaetes was observed during a 4-d, continuous-exposure experiment, with 96-h median effective concentrations of 6.2 ± 1.4 ,g/L. Overall, imidacloprid reduced the survivorship, feeding, and egestion of mayflies and oligochaetes at concentrations greater than 0.5 but less than 10 ,g/L. Inhibited feeding and egestion indicate physiological and behavioral responses to this insecticide. [source] Influence of isolation on the recovery of pond mesocosms from the application of an insecticide.ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 6 2007Abstract The influence of relative isolation on the ecological recovery of freshwater outdoor mesocosm communities after an acute toxic stress was assessed in a 14-month-long study. A single concentration of deltamethrin was applied to 8 out of 16 outdoor 9-m3 mesocosms to create a rapid decrease of the abundance of arthropods. To discriminate between external and internal recovery mechanisms, four treated and four untreated (control) mesocosms were covered with 1-mm mesh screen lids. The dynamics of planktonic communities were monitored in the four types of ponds. The abundance of many phytoplankton taxa increased after deltamethrin addition, but the magnitude of most increases was relatively small, probably due to low nutrient availability and the survival of rotifers. The greatest impact on zooplankton was seen in Daphniidae and, to a lesser extent, calanoid copepods. Recovery (defined as when statistical analysis failed to detect a difference in the abundance between the deltamethrin-treated ponds and corresponding control ponds for two consecutive sampling dates) of Daphniidae was observed in the water column 105 and 77 d after deltamethrin addition in open and covered mesocosms, respectively, and <42 d for both open and covered ponds at the surface of the sediments. Rotifers did not proliferate, probably because of the survival of predators (e.g., cyclopoid copepods). These results confirm that the recovery of planktonic communities after exposure to a strong temporary chemical stress mostly depends upon internal mechanisms (except for larvae of the insect Chaoborus sp.) and that recovery dynamics are controlled by biotic factors, such as the presence of dormant forms and selective survival of predators. [source] |