Insect Performance (insect + performance)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Influence of chorion ingestion on the performance of Ascia monuste and its association with cannibalism

ECOLOGICAL ENTOMOLOGY, Issue 6 2001
Helen C. H. Barros-Bellanda
Summary 1. In some lepidopterans, the newly hatched caterpillars feed on chorion (animal protein) as their first food. This is also a frequent behaviour of newly hatched caterpillars of Ascia monuste. 2. According to some parameters tested (time for pupation, number of adults, male imago weight, and fifth-instar ingestion), chorion ingestion by first-instar larvae affects adult performance positively. The ingestion of ultraviolet-sterilised chorion provided the same positive effect on performance. It is thus suggested that young caterpillars may be benefiting from chorion nutritionally, and that chorion ingestion is a chain of events that leads to positive effects on insect performance. 3. Cannibalism in A. monuste was observed in newly hatched caterpillars and is related to the chorion ingestion behaviour. A condition for this to occur was the interval of time of hatching, which means that, if a group of caterpillars hatches very much before another group, once the caterpillars have ingested the chorion of their own eggs, there is a tendency for them to ingest the chorion of other eggs (including unhatched eggs) and, consequently, practice cannibalism. 4. Ascia monuste immatures are considered to be herbivorous, however it is important to know that they eat animal tissue (chorion and conspecific eggs). [source]


Do elevated atmospheric CO2 and O3 affect food quality and performance of folivorous insects on silver birch?

GLOBAL CHANGE BIOLOGY, Issue 3 2010
PETRI A. PELTONEN
Abstract The individual and combined effects of elevated CO2 and O3 on the foliar chemistry of silver birch (Betula pendula Roth) and on the performance of five potential birch-defoliating insect herbivore species (two geometrid moths, one lymantrid moth and two weevils) were examined. Elevated CO2 decreased the water concentration in both short- and long-shoot leaves, but the effect of CO2 on the concentration of nitrogen and individual phenolic compounds was mediated by O3 treatment, tree genotype and leaf type. Elevated O3 increased the total carbon concentration only in short-shoot leaves. Bioassays showed that elevated CO2 increased the food consumption rate of juvenile Epirrita autumnata and Rheumaptera hastata larvae fed with short- and long-shoot leaves in spring and mid-summer, respectively, but had no effect on the growth of larvae. The contribution of leaf quality variables to the observed CO2 effects indicate that insect compensatory consumption may be related to leaf age. Elevated CO2 increased the food preference of only two tested species: Phyllobius argentatus (CO2 alone) and R. hastata (CO2 combined with O3). The observed stimulus was dependent on tree genotype and the measured leaf quality variables explained only a portion of the stimulus. Elevated O3 decreased the growth of flush-feeding young E. autumnata larvae, irrespective of CO2 concentration, apparently via reductions in general food quality. Therefore, the increasing tropospheric O3 concentration could pose a health risk for juvenile early-season birch folivores in future. In conclusion, the effects of elevated O3 were found to be detrimental to the performance of early-season insect herbivores in birch whereas elevated CO2 had only minor effects on insect performance despite changes in food quality related foliar chemistry. [source]


Consequences of simultaneous elevation of carbon dioxide and temperature for plant,herbivore interactions: a metaanalysis

GLOBAL CHANGE BIOLOGY, Issue 1 2006
E. L. ZVEREVA
Abstract The effects of elevated carbon dioxide on plant,herbivore interactions have been summarized in a number of narrative reviews and metaanalyses, while accompanying elevation of temperature has not received sufficient attention. The goal of our study is to search, by means of metaanalysis, for a general pattern in responses of herbivores, and plant characteristics important for herbivores, to simultaneous experimental increase of carbon dioxide and temperature (ECET) in comparison with both ambient conditions and responses to elevated CO2 (EC) and temperature (ET) applied separately. Our database includes 42 papers describing studies of 31 plant species and seven herbivore species. Nitrogen concentration and C/N ratio in plants decreased under both EC and ECET treatments, whereas ET had no significant effect. Concentrations of nonstructural carbohydrates and phenolics increased in EC, decreased in ET and did not change in ECET treatments, whereas terpenes did not respond to EC but increased in both ET and ECET; leaf toughness increased in both EC and ECET. Responses of defensive secondary compounds to treatments differed between woody and green tissues as well as between gymnosperm and angiosperm plants. Insect herbivore performance was adversely affected by EC, favoured by ET, and not modified by ECET. Our analysis allowed to distinguish three types of relationships between CO2 and temperature elevation: (1) responses to EC do not depend on temperature (nitrogen, C/N, leaf toughness, phenolics in angiosperm leaves), (2) responses to EC are mitigated by ET (sugars and starch, terpenes in needles of gymnosperms, insect performance) and (3) effects emerge only under ECET (nitrogen in gymnosperms, and phenolics and terpenes in woody tissues). This result indicates that conclusions of CO2 elevation studies cannot be directly extrapolated to a more realistic climate change scenario. The predicted negative effects of CO2 elevation on herbivores are likely to be mitigated by temperature increase. [source]


Role of larval host plants in the climate-driven range expansion of the butterfly Polygonia c-album

JOURNAL OF ANIMAL ECOLOGY, Issue 3 2007
BRIGITTE BRASCHLER
Summary 1Some species have expanded their ranges during recent climate warming and the availability of breeding habitat and species' dispersal ability are two important factors determining expansions. The exploitation of a wide range of larval host plants should increase an herbivorous insect species' ability to track climate by increasing habitat availability. Therefore we investigated whether the performance of a species on different host plants changed towards its range boundary, and under warmer temperatures. 2We studied the polyphagous butterfly Polygonia c-album, which is currently expanding its range in Britain and apparently has altered its host plant preference from Humulus lupulus to include other hosts (particularly Ulmus glabra and Urtica dioica). We investigated insect performance (development time, larval growth rate, adult size, survival) and adult flight morphology on these host plants under four rearing temperatures (18,28·5 °C) in populations from core and range margin sites. 3In general, differences between core and margin populations were small compared with effects of rearing temperature and host plant. In terms of insect performance, host plants were generally ranked U. glabra U. dioica > H. lupulus at all temperatures. Adult P. c-album can either enter diapause or develop directly and higher temperatures resulted in more directly developing adults, but lower survival rates (particularly on the original host H. lupulus) and smaller adult size. 4Adult flight morphology of wild-caught individuals from range margin populations appeared to be related to increased dispersal potential relative to core populations. However, there was no difference in laboratory reared individuals, and conflicting results were obtained for different measures of flight morphology in relation to larval host plant and temperature effects, making conclusions about dispersal potential difficult. 5Current range expansion of P. c-album is associated with the exploitation of more widespread host plants on which performance is improved. This study demonstrates how polyphagy may enhance the ability of species to track climate change. Our findings suggest that observed differences in climate-driven range shifts of generalist vs. specialist species may increase in the future and are likely to lead to greatly altered community composition. [source]


Mycorrhizal fungi as mediators of defence against insect pests in agricultural systems

AGRICULTURAL AND FOREST ENTOMOLOGY, Issue 4 2009
Rachel L. Vannette
Abstract 1Below-ground organisms influence above-ground interactions in both natural and agricultural ecosystems. Among the most important below-ground organisms are mycorrhizal fungi, comprising ubiquitous and ancient plant mutualists that have significant effects on plant growth and fitness mediated by resource exchange with plants. In the present study, we focus on the effects of arbuscular mycorrhizal fungi (AMF) on crop defence against insect pests. 2AMF alter the availability of resources used by crop plants to manufacture defences against pests and to compensate for pest damage. However, AMF also provide plants with nutrients that are known to increase insect performance. Through potentially opposing effects on plant nutritional quality and defence, mycorrhizal fungi can positively or negatively affect pest performance. 3Additionally, AMF may directly affect gene expression and plant defence signalling pathways involved in the construction and induction of plant defences, and these effects are apparently independent of those caused by nutrient availability. In this way, AMF may still influence plant defences in the fertilized and highly managed systems typical of agribusiness. 4Because AMF can affect plant tolerance to pest damage, they may have a significant impact on the shape of damage,yield relationships in crops. Potential mechanisms for this effect are suggested. 5We highlight the need for continuing research on the effects of AMF identity and the abundance on crop defences and tolerance to pest attack. Much work is needed on the potential effects of mycorrhizal colonization on plant signalling and the induction of direct and indirect defences that may protect against pest damage. [source]


Response of quaking aspen genotypes to enriched CO2: foliar chemistry and tussock moth performance

AGRICULTURAL AND FOREST ENTOMOLOGY, Issue 4 2002
Richard L. Lindroth
Abstract 1Genetic variation in the phytochemical responses of plants to CO2 enrichment is likely to alter trophic dynamics, and to shift intraspecific selection pressures on plant populations. We evaluated the independent and interactive effects of atmospheric CO2 and quaking aspen (Populus tremuloides Michx.) genotype on chemical composition of foliage and performance of the whitemarked tussock moth (Orgyia leucostigma J. E. Sm.). 2This research was conducted at the Aspen FACE (Free Air CO2 Enrichment) site in northern Wisconsin, U.S.A. Leaf samples were collected periodically from each of three genetically variable aspen genotypes growing under ambient and elevated CO2, and analysed for levels of primary and secondary metabolites. Tussock moth larvae were reared in situ on experimental trees, and development times and pupal masses were recorded. 3Foliar chemical composition varied among aspen genotypes and in response to CO2 enrichment. However, chemical responses of trees to elevated CO2 were generally consistent across genotypes. 4Larval development times varied among host genotypes and increased slightly for insects on high-CO2 plants. Enriched CO2 tended to reduce insect pupal masses, particularly for females on one of the three aspen genotypes. 5CO2 × genotype interactions observed for plant chemistry and insect performance in this study with a small number of genotypes are probably too few, and too weak, to shift selection pressures in aspen populations. These results differ, however, from earlier work in which more substantial CO2 × genotype interactions were observed for plant chemistry. [source]


Global Change Effects on Plant Chemical Defenses against Insect Herbivores

JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 11 2008
M. Gabriela Bidart-Bouzat
Abstract This review focuses on individual effects of major global change factors, such as elevated CO2, O3, UV light and temperature, on plant secondary chemistry. These secondary metabolites are well-known for their role in plant defense against insect herbivory. Global change effects on secondary chemicals appear to be plant species-specific and dependent on the chemical type. Even though plant chemical responses induced by these factors are highly variable, there seems to be some specificity in the response to different environmental stressors. For example, even though the production of phenolic compounds is enhanced by both elevated CO2 and UV light levels, the latter appears to primarily increase the concentrations of flavonoids. Likewise, specific phenolic metabolites seem to be induced by O3 but not by other factors, and an increase in volatile organic compounds has been particularly detected under elevated temperature. More information is needed regarding how global change factors influence inducibility of plant chemical defenses as well as how their indirect and direct effects impact insect performance and behavior, herbivory rates and pathogen attack. This knowledge is crucial to better understand how plants and their associated natural enemies will be affected in future changing environments. [source]


Effects of CO2 and light on tree phytochemistry and insect performance

OIKOS, Issue 2 2000
Jep Agrell
Direct and interactive effects of CO2 and light on tree phytochemistry and insect fitness parameters were examined through experimental manipulations of plant growth conditions and performance of insect bioassays. Three species of deciduous trees (quaking aspen, Populus tremuloides; paper birch, Betula papyrifera; sugar maple, Acer saccharum) were grown under ambient (387±8 ,L/L) and elevated (696±2 ,L/L) levels of atmospheric CO2, with low and high light availability (375 and 855 ,mol×m,2×s,1 at solar noon). Effects on the population and individual performance of a generalist phytophagous insect, the white-marked tussock moth (Orgyia leucostigma) were evaluated. Caterpillars were reared on experimental trees for the duration of the larval stage, and complementary short-term (fourth instar) feeding trials were conducted with insects fed detached leaves. Phytochemical analyses demonstrated strong effects of both CO2 and light on all foliar nutritional variables (water, starch and nitrogen). For all species, enriched CO2 decreased water content and increased starch content, especially under high light conditions. High CO2 availability reduced levels of foliar nitrogen, but effects were species specific and most pronounced for high light aspen and birch. Analyses of secondary plant compounds revealed that levels of phenolic glycosides (salicortin and tremulacin) in aspen and condensed tannins in birch and maple were positively influenced by levels of both CO2 and light. In contrast, levels of condensed tannins in aspen were primarily affected by light, whereas levels of ellagitannins and gallotannins in maple responded to light and CO2, respectively. The long-term bioassays showed strong treatment effects on survival, development time, and pupal mass. In general, CO2 effects were pronounced in high light and decreased along the gradient aspen birch maple. For larvae reared on high light aspen, enriched CO2 resulted in 62% fewer survivors, with increased development time, and reduced pupal mass. For maple-fed insects, elevated CO2 levels had negative effects on survival and pupal mass in low light. For birch, the only negative CO2 effects were observed in high light, where female larvae showed prolonged development. Fourth instar feeding trials demonstrated that low food conversion efficiency reduced insect performance. Elevated levels of CO2 significantly reduced total consumption, especially by insects on high light aspen and low light maple. This research demonstrates that effects of CO2 on phytochemistry and insect performance can be strongly light-dependent, and that plant responses to these two environmental variables differ among species. Overall, increased CO2 availability appeared to increase the defensive capacity of early-successional species primarily under high light conditions, and of late-successional species under low light conditions. Due to the interactive effects of tree species, light, CO2, and herbivory, community composition of forests may change in the future. [source]


Silicon-augmented resistance of plants to herbivorous insects: a review

ANNALS OF APPLIED BIOLOGY, Issue 2 2009
O.L. Reynolds
Abstract Silicon (Si) is one of the most abundant elements in the earth's crust, although its essentiality in plant growth is not clearly established. However, the importance of Si as an element that is particularly beneficial for plants under a range of abiotic and biotic stresses is now beyond doubt. This paper reviews progress in exploring the benefits at two- and three-trophic levels and the underlying mechanism of Si in enhancing the resistance of host plants to herbivorous insects. Numerous studies have shown an enhanced resistance of plants to insect herbivores including folivores, borers, and phloem and xylem feeders. Silicon may act directly on insect herbivores leading to a reduction in insect performance and plant damage. Various indirect effects may also be caused, for example, by delaying herbivore establishment and thus an increased chance of exposure to natural enemies, adverse weather events or control measures that target exposed insects. A further indirect effect of Si may be to increase tolerance of plants to abiotic stresses, notably water stress, which can in turn lead to a reduction in insect numbers and plant damage. There are two mechanisms by which Si is likely to increase resistance to herbivore feeding. Increased physical resistance (constitutive), based on solid amorphous silica, has long been considered the major mechanism of Si-mediated defences of plants, although there is recent evidence for induced physical defence. Physical resistance involves reduced digestibility and/or increased hardness and abrasiveness of plant tissues because of silica deposition, mainly as opaline phytoliths, in various tissues, including epidermal silica cells. Further, there is now evidence that soluble Si is involved in induced chemical defences to insect herbivore attack through the enhanced production of defensive enzymes or possibly the enhanced release of plant volatiles. However, only two studies have tested for the effect of Si on an insect herbivore and third trophic level effects on the herbivore's predators and parasitoids. One study showed no effect of Si on natural enemies, but the methods used were not favourable for the detection of semiochemical-mediated effects. Work recently commenced in Australia is methodologically and conceptually more advanced and an effect of Si on the plants' ability to generate an induced response by acting at the third trophic level was observed. This paper provides the first overview of Si in insect herbivore resistance studies, and highlights novel, recent hypotheses and findings in this area of research. Finally, we make suggestions for future research efforts in the use of Si to enhance plant resistance to insect herbivores. [source]


Influence of previous frost damage on tree growth and insect herbivory of Eucalyptus globulus globulus

AUSTRAL ECOLOGY, Issue 5 2001
Vivien P. Thomson
Abstract The plant stress hypothesis suggests that some herbivores favour stressed plants, whereas the plant vigour hypothesis proposes that other herbivores prefer vigorous plants. The effects of a prior stress, that of frost damage, were examined on the subsequent growth of Eucalyptus globulus globulus and on the response of insect herbivores. Frost damage affected tree growth by reducing new leaf area and increasing specific leaf area (SLA). However, herbivore abundance was not affected by prior frost damage. Two feeding trials using Anoplognathus chloropyrus and Hyalarcta huebneri and a morphometric study of Ctenarytaina eucalypti were conducted to assess the performance of herbivores on trees that had suffered more or less frost damage. Consumption by A. chloropyrus and H. huebneri was unaffected by foliage origin (damaged versus healthy). Hyalarcta huebneri grew faster when fed leaves from previously damaged trees, and C. eucalypti from previously damaged trees were larger than those from healthy trees. Enhanced insect performance on frost damaged plants may have resulted from the high specific leaf area (most likely thinner) leaves. The herbivore abundance data did not support the hypothesis that previously frost damaged plants are preferred by insects. However, increased growth of H. huebneri and larger body size of C. eucalypti on damaged trees indicates that previously stressed trees may produce leaves of higher nutritional value. [source]