Insect Groups (insect + groups)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Conservation of Insect Diversity: a Habitat Approach

CONSERVATION BIOLOGY, Issue 6 2000
Jennifer B. Hughes
To explore the feasibility of basing conservation action on community-level biogeography, we sampled a montane insect community. We addressed three issues: (1) the appropriate scale for sampling insect communities; (2) the association of habitat specialization,perhaps a measure of extinction vulnerability,with other ecological or physical traits; and (3) the correlation of diversity across major insect groups. Using malaise traps in Gunnison County, Colorado, we captured 8847 Diptera (identified to family and morphospecies), 1822 Hymenoptera (identified to morphospecies), and 2107 other insects (identified to order). We sampled in three habitat types,meadow, aspen, and conifer,defined on the basis of the dominant vegetation at the scale of hundreds of meters. Dipteran communities were clearly differentiated by habitat type rather than geographic proximity. This result also holds true for hymenopteran communities. Body size and feeding habits were associated with habitat specialization at the family level. In particular, habitat generalists at the family level,taxa perhaps more likely to survive anthropogenic habitat alteration,tended to be trophic generalists. Dipteran species richness was marginally correlated with hymenopteran species richness and was significantly correlated with the total number of insect orders sampled by site. Because these correlations result from differences in richness among habitat types, insect taxa may be reasonable surrogates for one another when sampling is done across habitat types. In sum, community-wide studies appear to offer a practical way to gather information about the diversity and distribution of little-known taxa. Resumen:No existe ni el tiempo ni los recursos para diseñar planes de conservación para cada especie, particularmente para los taxones poco estudiados, no carismáticas, pero ecológicamente importantes que componen la mayoría de la biodiversidad. Para explorar la factibilidad de basar acciones de conservación en biogegrafía a nivel comunitario, muestreamos una comunidad de insectos de montaña. Evaluamos tres aspectos: (1) la escala adecuada para el muestreo de comunidades de insectos; (2) la asociación de especialización de hábitat,quizá una medida de vulnerabilidad de extinción,con otras características ecológicas o físicas; y (3) la correlación de la diversidad a lo largo de los grupos principales de insectos. Mediante el uso de trampas en el condado Gunnison, en Colorado, capturamos 8847 dípteros (identificados a nivel de familia y morfoespecies), 1822 himenópteros (identificadas hasta morfoespecies) y 2107 otros insectos (identificados a nivel de orden). Muestreamos tres tipos de hábitats,vega, álamos temblones y coníferas,definidos en base a la vegetación dominante a escala de cientos de metros. Las comunidades de dípteros estuvieron claramente diferenciadas por tipos de hábitat y no por la proximidad geográfica. Este resultado también se mantiene para las comunidades de himenópteros. El tamaño del cuerpo y los hábitos alimenticios estuvieron asociados con la especialización del hábitat a nivel de familia. En particular, los generalistas de hábitat a nivel de familia,los taxones que posiblemente tengan mayor probabilidad de sobrevivir alteraciones antropogénicas del hábitat,tendieron a ser generalistas tróficos. La riqueza de las especies de dípteros estuvo marginalmente correlacionada con la riqueza de especies de himenópteros y estuvo significativamente correlacionada con el número total de órdenes de insectos muestreadas por sitio. Debido a que estas correlaciones resultaron de diferencias en la riqueza de especies entre tipos de hábitats, los taxones de insectos podrían ser substitutos mutuos razonables cuando se muestrea entre diferentes tipos de hábitats. En resumen, los estudios a lo largo de comunidades parecen ofrecer una forma práctica de recolectar información sobre la diversidad y distribución de los taxones poco estudiados. [source]


Evolutionary conservation and divergence of the segmentation process in arthropods

DEVELOPMENTAL DYNAMICS, Issue 6 2007
Wim G. M. Damen
Abstract A fundamental characteristic of the arthropod body plan is its organization in metameric units along the anterior,posterior axis. The segmental organization is laid down during early embryogenesis. Our view on arthropod segmentation is still strongly influenced by the huge amount of data available from the fruit fly Drosophila melanogaster (the Drosophila paradigm). However, the simultaneous formation of the segments in Drosophila is a derived mode of segmentation. Successive terminal addition of segments from a posteriorly localized presegmental zone is the ancestral mode of arthropod segmentation. This review focuses on the evolutionary conservation and divergence of the genetic mechanisms of segmentation within arthropods. The more downstream levels of the segmentation gene network (e.g., segment polarity genes) appear to be more conserved than the more upstream levels (gap genes, Notch/Delta signaling). Surprisingly, the basally branched arthropod groups also show similarities to mechanisms used in vertebrate somitogenesis. Furthermore, it has become clear that the activation of pair rule gene orthologs is a key step in the segmentation of all arthropods. Important findings of conserved and diverged aspects of segmentation from the last few years now allow us to draw an evolutionary scenario on how the mechanisms of segmentation could have evolved and led to the present mechanisms seen in various insect groups including dipterans like Drosophila. Developmental Dynamics 236:1379,1391, 2007. © 2007 Wiley-Liss, Inc. [source]


Local floral composition and the behaviour of pollinators: attraction to and foraging within experimental patches

ECOLOGICAL ENTOMOLOGY, Issue 5 2010
AMPARO LÁZARO
1. Understanding how foraging decisions take place at the local scale is relevant because they may directly affect the fitness of individual plants. However, little is known about how local diversity and density affect the foraging behaviour of most pollinator groups. 2. By introducing two potted plant species (Salvia farinacae and Tagetes bonanza) into two populations of Taraxacum officinale, we investigated how plant identity, the mixtures of these plant species, and total plant density affected the attraction to and the foraging within a patch for six pollinator groups. 3. The foraging behaviour was mainly driven by the availability of the preferred plant species, and secondly by patch diversity and density. In general, dense patches and those containing the three-species mixture were preferred by all insect groups for arrival, although muscoid and hover flies responded less to local floral composition than bees. Local diversity and density had, however, a weaker effect on foraging behaviour within patches. Site dependence in response to floral treatments could be attributable to differences between sites in pollinator assemblage and Taraxacum density. 4. Studies like ours will help to understand how foraging decisions occur at the local scale and how foraging patterns may differ between pollinators and sites. [source]


Insecticides with novel modes of action: Mechanism, selectivity and cross-resistance

ENTOMOLOGICAL RESEARCH, Issue 3 2007
Isaac ISHAAYA
Abstract Efforts have been made during the past two decades to develop insecticides with selective properties that act specifically on biochemical sites present in particular insect groups, but whose properties differ from other insecticides. This approach has led to the discovery of compounds that affect the hormonal regulation of molting and developmental processes in insects; for example, ecdysone agonists, juvenile hormone mimics and chitin synthesis inhibitors. In addition, compounds that selectively interact with the insect nicotinic acetylcholine receptor, such as imidacloprid, acetamiprid and thiamethoxam, have been introduced for the control of aphids, whiteflies and other insect species. Natural products acting selectively on insect pests, such as avermectins, spinosad and azadirachtin, have been introduced for controlling selected groups of insect pests. Compounds acting on the nervous site that controls the sucking pump of aphids and whiteflies, such as pymetrozine, or respiration, such as diafenthiuron, have been introduced for controlling sucking pests. All the above compounds are important components in pest and resistance management programs. [source]


Influence of isolation on the recovery of pond mesocosms from the application of an insecticide.

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 6 2007

Abstract The immediate response and recovery of the macrobenthic communities of nonisolated and isolated freshwater outdoor 9 m3 mesocosms following an acute stress caused by the addition of deltamethrin were studied over a 14-month period. To discriminate between internal and external recovery mechanisms, half of the treated ponds were covered by 1-mm mesh lids that restricted aerial recolonization. Both structural (abundance of the different taxonomic groups) and functional (litter breakdown) parameters were monitored. Insects were broadly reduced in numbers by deltamethrin addition. In general, noninsect groups were not affected or increased in abundance in deltamethrin-treated ponds, probably because of relative insensitivity to deltamethrin, reduced predation, and lower competition for food. No major change in litter breakdown rates were seen, probably because of functional redundancy among the macrobenthic community. Chironominae larvae recovered in open, treated mesocosms 62 d after deltamethrin addition and most insect groups recovered 84 d after the treatment date. However, the presence of lids significantly reduced insect recovery rate, suggesting that it largely depends on the immigration of winged forms (i.e., external recovery) from surrounding non- or less affected systems. These results indicate that the recovery time of macrobenthic communities in an affected natural pond would depend on spatial characteristics of the landscape and also the season that exposure occurs. Isolated ecosystems would display posttreatment insect recovery dynamics very different from highly connected ones, evolving toward alternate pseudoequilibrium states, possibly with lower biodiversity but with preserved functionality. Consequences for higher tier risk assessment of pesticides are discussed. [source]


Analysis of nubbin expression patterns in insects

EVOLUTION AND DEVELOPMENT, Issue 5 2004
Hua Li
Summary Previous studies have shown that the gene nubbin (nub) exhibits large differences in expression patterns between major groups of arthropods. This led us to hypothesize that nub may have evolved roles that are unique to particular arthropod lineages. However, in insects, nub has been studied only in Drosophila. To further explore its role in insects in general, we analyzed nub expression patterns in three hemimetabolous insect groups: zygentomans (Thermobia domestica, firebrat), dyctiopterans (Periplaneta americana, cockroach), and hemipterans (Oncopeltus fasciatus, milkweed bug). We discovered three major findings. First, observed nub patterns in the ventral central nervous system ectoderm represent a synapomorphy (shared derived feature) that is not present in other arthropods. Furthermore, each of the analyzed insects exhibits a species-specific nub expression in the central nervous system. Second, recruitment of nub for a role in leg segmentation occurred early during insect evolution. Subsequently, in some insect lineages (cockroaches and flies), this original role was expanded to include joints between all the leg segments. Third, the nub expression in the head region shows a coordinated change in association with particular mouthpart morphology. This suggests that nub has also gained an important role in the morphological diversification of insect mouthparts. Overall, the obtained data reveal an extraordinary dynamic and diverse pattern of nub evolution that has not been observed previously for other developmental genes. [source]


Defying the curse of ignorance: perspectives in insect macroecology and conservation biogeography

INSECT CONSERVATION AND DIVERSITY, Issue 3 2010
JOSE ALEXANDRE FELIZOLA DINIZ-FILHO
Abstract., 1. Despite the abundance, richness and ecological importance of insects, distribution patterns remain unknown for most groups, and this creates serious difficulties for the evaluation of macroecological patterns and the underlying drivers. Although the problem is real, we provide an optimistic perspective on insect macroecology and conservation biogeography. 2. Although data for macroecological analysis of insects are not as complete as for many other organisms (e.g., mammals and birds), at least for some insect groups they are equivalent to what existed 10 or 20 years ago for the charismatic megafauna, so initiatives to compile data for broad-scale analyses are feasible. 3. The primary constraint for studies in insect macroecology and conservation biogeography is not (only) poor data; part of the problem arises from a lack of knowledge on how macroecological patterns and processes can be analysed and interpreted. 4. Finally, we present an overview of recent papers using insects as model organisms in macroecology, including richness and diversity gradients, ecogeographical rules, inter-specific relationships, conservation planning and modelling species distributions. Although our list is not exhaustive, it may be useful as guidelines for future research and encourage ICD readers to develop analyses for other insect groups. [source]


Spatial distribution and differential expression of the PBAN receptor in tissues of adult Helicoverpa spp. (Lepidoptera: Noctuidae)

INSECT MOLECULAR BIOLOGY, Issue 3 2007
A. Rafaeli
Abstract Pheromone-biosynthesis-activating neuropeptide (PBAN) regulates sex pheromone production in many female moths. PBAN-like peptides, with common FXPRLamide C-terminals are found in other insect groups where they have other functions. The ubiquity and multifunctional nature of the pyrokinin/PBAN family of peptides suggests that the PBAN receptor proteins could also be present in a variety of insect tissues with alternative functions from that of sex pheromone biosynthesis. Previously we showed the presence of the PBAN-R in Helicoverpa armigera at the protein level. In the present study we confirm the similarities between the two Helicoverpa species: armigera and zea by (1) demonstrating the presence of the receptor protein in Sf9 cells, cloned to express the HezPBAN receptor, as compared with the endogenous receptor protein, previously shown in H. armigera pheromone glands, and (2) by identifying the nucleotide sequence of the PBAN-R from mRNA of H. armigera pheromone glands. Sequences of the two Helicoverpa spp. are 98% identical with most changes taking place in the 3,-end. We demonstrate the spatial distribution of the PBAN receptor protein in membranes of H. armigera brain (Br), thoracic ganglion (TG) and ventral nerve cord (VNC). We also demonstrate the presence and differential expression of the PBAN receptor gene (using reverse transcription,polymerase chain reaction and reverse transcription,quantitative real-time polymerase chain reaction, respectively) in the neural tissues (Br, TG and VNC) of adult H. armigera female moths as compared with its presence in pheromone glands. Surprisingly, the gene for the PBAN receptor is also detected in the male tissue homologous to the female pheromone gland, the aedeagus, although the protein is undetectable and PBAN does not induce physiological (pheromone production) or cellular (cyclic-adenosine monophosphate production) responses in this tissue. Our findings indicate that PBAN or PBAN-like receptors are present in the neural tissues and may represent a neurotransmitter-like function for PBAN-like peptides. In addition, the surprising discovery of the presence of the gene encoding the PBAN receptor in the male homologous tissue, but its absence at the protein level, launches opportunities for studying molecular regulation pathways and the evolution of these G protein coupled receptors (GPCRs). [source]


Thermal tolerance and geographical range size in the Agabus brunneus group of European diving beetles (Coleoptera: Dytiscidae)

JOURNAL OF BIOGEOGRAPHY, Issue 2 2008
P. Calosi
Abstract Aim, Within clades, most taxa are rare, whilst few are common, a general pattern for which the causes remain poorly understood. Here we investigate the relationship between thermal performance (tolerance and acclimation ability) and the size of a species' geographical range for an assemblage of four ecologically similar European diving beetles (the Agabus brunneus group) to examine whether thermal physiology relates to latitudinal range extent, and whether Brown's hypothesis and the environmental variability hypothesis apply to these taxa. Location, Europe. Methods, In order to determine the species tolerances to either low or high temperatures we measured the lethal thermal limits of adults, previously acclimated at one of two temperatures, by means of thermal ramping experiments (± 1°C min,1). These measures of upper and lower thermal tolerances (UTT and LTT respectively) were then used to estimate each species' thermal tolerance range, as total thermal tolerance polygons and marginal UTT and LTT thermal polygons. Results, Overall, widespread species have higher UTTs and lower LTTs than restricted ones. Mean upper lethal limits of the Agabus brunneus group (43 to 46°C), are similar to those of insects living at similar latitudes, whilst mean lower lethal limits (,6 to ,9°C) are relatively high, suggesting that this group is not particularly cold-hardy compared with other mid-temperate-latitude insects. Widespread species possess the largest thermal tolerance ranges and have a relatively symmetrical tolerance to both high and low temperatures, when compared with range-restricted relatives. Over the temperature range employed, adults did not acclimate to either high or low temperatures, contrasting with many insect groups, and suggesting that physiological plasticity has a limited role in shaping distribution. Main conclusions, Absolute thermal niche appears to be a good predictor of latitudinal range, supporting both Brown's hypothesis and the environmental variability hypothesis. Restricted-range species may be more susceptible to the direct effect of climate change than widespread species, notwithstanding the possibility that even ,thermally-hardy', widespread species may be influenced by the indirect effects of climate change such as reduction in habitat availability in Mediterranean areas. [source]


From kissing to belly stridulation: comparative analysis reveals surprising diversity, rapid evolution, and much homoplasy in the mating behaviour of 27 species of sepsid flies (Diptera: Sepsidae)

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 11 2009
N. PUNIAMOORTHY
Abstract Our understanding of how fast mating behaviour evolves in insects is rather poor due to a lack of comparative studies among insect groups for which phylogenetic relationships are known. Here, we present a detailed study of the mating behaviour of 27 species of Sepsidae (Diptera) for which a well-resolved and supported phylogeny is available. We demonstrate that mating behaviour is extremely diverse in sepsids with each species having its own mating profile. We define 32 behavioural characters and document them with video clips. Based on sister species comparisons, we provide several examples where mating behaviour evolves faster than all sexually dimorphic morphological traits. Mapping the behaviours onto the molecular tree reveals much homoplasy, comparable to that observed for third positions of mitochondrial protein-encoding genes. A partitioned Bremer support (PBS) analysis reveals conflict between the molecular and behavioural data, but behavioural characters have higher PBS values per parsimony-informative character than DNA sequence characters. [source]


The physiology of insect auditory afferents

MICROSCOPY RESEARCH AND TECHNIQUE, Issue 6 2004
Andrew C. Mason
Abstract This review presents an overview of the physiology of primary receptors serving tympanal hearing in insects. Auditory receptor responses vary with frequency, intensity, and temporal characteristics of sound stimuli. Various insect species exploit each of these parameters to differing degrees in the neural coding of auditory information, depending on the nature of the relevant stimuli. Frequency analysis depends on selective tuning in individual auditory receptors. In those insect groups that have individually tuned receptors, differences in physiology are correlated with structural differences among receptors and with the anatomical arrangement of receptors within the ear. Intensity coding is through the rate-level characteristics of tonically active auditory receptors and through variation in the absolute sensitivities of individual receptors (range fractionation). Temporal features of acoustic stimuli may be copied directly in the timing of afferent responses. Salient signal characteristics may also be represented by variation in the timing of afferent responses on a finer temporal scale, or by the synchrony of responses across a population of receptors. Microsc. Res. Tech. 63:338,350, 2004. © 2004 Wiley-Liss, Inc. [source]


The adipokinetic hormones of Heteroptera: a comparative study

PHYSIOLOGICAL ENTOMOLOGY, Issue 2 2010
DALIBOR KODRÍK
The adipokinetic hormones (AKHs) from 15 species of heteropteran Hemiptera (encompassing eight families, six superfamilies and three infraorders) have been isolated and structurally identified using liquid chromatography coupled with mass spectrometry. None of the structures are novel and all are octapeptides. These peptide sequence data are used, together with the previously available AKH sequence data on Heteroptera, to create a larger dataset for comparative analyses. This results, in total, in AKH sequences from 30 species (spanning 13 families), which are used in a matrix confronted with the current hypotheses on the phylogeny of Heteroptera. The expanded dataset shows that all heteropterans have octapeptide AKHs; three species have two AKHs, whereas the overwhelming majority have only one AKH. From a total of 11 different AKH peptides known from Heteroptera to date, three AKHs occur frequently: Panbo-red pigment-concentrating hormone (RPCH) (×10), Schgr-AKH-II (×6) and Anaim-AKH (×4). The heteropteran database also suggests that particular AKH variants are family-specific. The AKHs of Heteroptera: Pentatomomorpha (all terrestrial) are not present in Nepomorpha (aquatic) and Gerromorpha: Gerridae (semiaquatic); AKHs with a Val in position 2 are absent in the Pentatomomorpha (only AKHs with Leu2 are present), whereas Val2 predominates in the nonterrestrial species. An unexpected diversity of AKH sequences is found in Nepomorpha, Nepoidea, Nepidae and Nepinae, whereas Panbo-RPCH (which has been identified in all infraorders of decapod crustaceans) is present in all analysed species of Pentatomidae and also in the only species of Tessaratomidae investigated. The molecular evolution of Heteroptera with respect to other insect groups and to crustaceans is discussed [source]


Functional significance of the dark central floret of Daucus carota (Apiaceae) L.; is it an insect mimic?

PLANT SPECIES BIOLOGY, Issue 2 2009
DAVID GOULSON
Abstract In Daucus carota L. (Apiaceae) the florets comprising the central umbellet of inflorescences are usually pink or dark purple, presenting a marked contrast to the surrounding umbellets, which are generally white. The number of dark florets varies, and some inflorescences have no dark florets. It has been proposed that the dark florets function as an insect mimic, and in so doing serve to attract insects to the flower. In contrast, other authors, Darwin included, suggest that they are functionally redundant. The present study examined whether the dark florets attract insects, and also whether this effect can be replicated by replacing these florets with an insect. At the study site in Portugal the predominant insect visitor was the beetle Anthrenus verbasci L. (Dermestidae), which is similar in size and shape to the dark florets. Large inflorescences and those with more dark florets attracted more beetles than small inflorescences and those with fewer or no dark florets. Inflorescences with the dark florets removed attracted fewer beetles visitors compared with intact inflorescences. Inflorescences in which the dark florets were replaced with one or a cluster of five dead, freeze-killed A. verbasci attracted more beetles than inflorescences from which the dark florets had been removed. Replacement of the dark florets with a relatively large Meloid beetle resulted in the attraction of markedly fewer A. verbasci. We conclude that the dark florets can act as an insect attractant for some insect groups by acting as an insect mimic, and that they are adaptive, in contrast to the speculations of Darwin. [source]


Common names for Australian ants (Hymenoptera: Formicidae)

AUSTRALIAN JOURNAL OF ENTOMOLOGY, Issue 4 2002
Alan N Andersen
Abstract Most insects do not have common names, and this is a significant barrier to public interest in them, and to their study by non-specialists. This holds for even highly familiar insect groups such as ants. Here, I propose common names for all major native Australian ant genera and species-groups, as well as for many of the most abundant and distinctive species. Sixty-two genera, 142 species-groups and 50 species are given names. The naming system closely follows taxonomic structure; typically a genus is given a general common name, under which species-group and species names are nested. [source]