Insect Genomes (insect + genome)

Distribution by Scientific Domains


Selected Abstracts


Characterization of the Hox cluster from the mosquito Anopheles gambiae (Diptera: culicidae)

EVOLUTION AND DEVELOPMENT, Issue 6 2000
Thomas P. Powers
SUMMARY The Hox genes have been found to encode transcription factors, which specify the morphological identity of structures along the anteroposterior axis of animals ranging from worms to mice. The canonical set of nine genes is organized in a cluster in the genome of several protostomes and deuterostomes. However, within insects, whereas the Hox genes are organized in a single cluster in the beetle Tribolium castaneum, they are split into two separate groups in the flies Drosophila melanogaster and Drosophila virilis. The significance of a split Hox cluster is unknown and has been observed in only one organism outside the Drosophila lineage: the nematode Caenorhabditis elegans. We have cloned a majority of the Hox genes from the mosquito Anopheles gambiae (Diptera: Culicidae) and compared their genomic organization with that of Tribolium and Drosophila to determine if a split Hox cluster is found in dipterans aside from the Drosophilidae. We find that the Hox genes in Anopheles, as in Tribolium, are organized in a single cluster that spans a genomic region of at least 700 kb. This finding suggests that, within the insect genome, the partition of the Hox cluster may have evolved exclusively within the Drosophila lineage. The genomic structures of the resident genes, however, appear to be largely conserved between A. gambiae and D. melanogaster. [source]


Abundant nuclear copies of mitochondrial origin (NUMTs) in the Aedes aegypti genome

INSECT MOLECULAR BIOLOGY, Issue 6 2009
W. C. Black IV
Abstract A portion of the Aedes aegypti mitochondrial NADH dehydrogenase subunit 4 gene (ND4) was amplified using PCR with a 42 °C annealing temperature. Amplified fragments from individual mosquitoes were similar to ND4 but contained multiple segregating sites. We suspected that nuclear copies of mitochondrial origin (NUMTs) exist in the Ae. aegypti genome. A BlastN search in VectorBase with the entire Ae. aegypti mitochondrial genome identified 233 NUMTs comprising 110 178 bp in 145 supercontigs. At a density of 0.080 bp/kb, this represents the second highest density of NUMTs in an insect genome and the highest in Diptera. Analyses of flanking sequences suggested that Ae. aegypti NUMTs arise through mtDNA leakage from damaged mitochondria followed by breakage and nonhomologous recombination, rather than through duplicative processes such as transposition or molecular drive. [source]


Tiny genomes and endoreduplication in Strepsiptera

INSECT MOLECULAR BIOLOGY, Issue 6 2004
J. S. Johnston
Abstract Using flow cytometry, the genome sizes of two species of Strepsiptera were studied: that of male Caenocholax fenyesi texensis Kathirithamby & Johnston (Myrmecolacidae) at 108 Mb, which is the smallest insect genome documented to date; and those of male and female Xenos vesparum Rossi (Stylopidae), which are 1C = 130 and 133 Mb, respectively. The genome sizes of the following were analysed for comparative purposes: (a) the Hessian fly, Mayetiola destructor (Say), which was previously reported to be the smallest among insects: the male measured at 1C = 121 Mb and the female at 1C = 158 Mb; and (b) the female parasitic, haplodiploid, microhymenopteran wasp, Trichogramma brassicae Bezdenko, which measured at 1C = 246 Mb. The hosts of the strepsipterans were also measured: male Solenopsis invicta Buren, the red imported fire ant (host of male C. f. texensis), which is 1C = 753.3 Mb, and female Polistes dominulus Christ, the paper wasp (host of X. vesparum), is 1C = 301.4 Mb. Endoreduplication (4C) of the genome of the thorax of the male strepsipteran, and higher levels of endoduplication (4, 8, 16C) in the body of the larger female was observed. In contrast, little or no endoreduplication was observed, either in the Hessian fly, or in the parasitic wasp. [source]


Halloween genes and nuclear receptors in ecdysteroid biosynthesis and signalling in the pea aphid

INSECT MOLECULAR BIOLOGY, Issue 2010
O. Christiaens
Abstract The pea aphid (Acyrthosiphon pisum) is the first whole genome sequenced insect with a hemimetabolic development and an emerging model organism for studies in ecology, evolution and development. The insect steroid moulting hormone 20-hydroxyecdysone (20E) controls and coordinates development in insects, especially the moulting/metamorphosis process. We, therefore present here a comprehensive characterization of the Halloween genes phantom, disembodied, shadow, shade, spook and spookiest, coding for the P450 enzymes that control the biosynthesis of 20E. Regarding the presence of nuclear receptors in the pea aphid genome, we found 19 genes, representing all of the seven known subfamilies. The annotation and phylogenetic analysis revealed a strong conservation in the class of Insecta. But compared with other sequenced insect genomes, three orthologues are missing in the Acyrthosiphon genome, namely HR96, PNR-like and Knirps. We also cloned the EcR, Usp, E75 and HR3. Finally, 3D-modelling of the ligand-binding domain of Ap-EcR exhibited the typical canonical structural scaffold with 12 ,-helices associated with a short hairpin of two antiparallel ,-strands. Upon docking, 20E was located in the hormone-binding groove, supporting the hypothesis that EcR has a role in 20E signalling. [source]


Use of quantitative real-time polymerase chain reaction to estimate the size of the house-fly Musca domestica genome

INSECT MOLECULAR BIOLOGY, Issue 6 2006
J. Gao
Abstract House-flies, Musca domestica, are carriers of more than 100 devastating diseases that have severe consequences for human and animal health. A key bottleneck to progress in controlling the devastating human diseases transmitted by house-flies is lack of knowledge of the basic molecular biology of this species. However, before sequencing of the house-fly genome can be seriously considered it is important to know the size of the genome. In this paper, we used quantitative real-time polymerase chain reaction to calculate genome size of the house-fly in side-by-side experiments with Drosophila melanogaster (known genome size of 180 Mb). Our results indicate the size of the house-fly genome is 295 ± 10 Mb and that of D. melanogaster is 184 Mb. Thus, the house-fly genome is only about 1.6-fold larger than the genome of D. melanogaster. This indicates that the size of the house-fly genome makes it an excellent candidate for whole genome sequencing and that quantitative real-time polymerase chain reaction is an accurate method for the estimation of the size of insect genomes. [source]


High efficiency site-specific genetic engineering of the mosquito genome

INSECT MOLECULAR BIOLOGY, Issue 2 2006
D. D. Nimmo
Abstract Current techniques for the genetic engineering of insect genomes utilize transposable genetic elements, which are inefficient, have limited carrying capacity and give rise to position effects and insertional mutagenesis. As an alternative, we investigated two site-specific integration mechanisms in the yellow fever mosquito, Aedes aegypti. One was a modified CRE/lox system from phage P1 and the other a viral integrase system from Streptomyces phage phi C31. The modified CRE/lox system consistently failed to produce stable germline transformants but the phi C31 system was highly successful, increasing integration efficiency by up to 7.9-fold. The ability to efficiently target transgenes to specific chromosomal locations and the potential to integrate very large transgenes has broad applicability to research on many medically and economically important species. [source]


Expression of an Aedes aegypti cation-chloride cotransporter and its Drosophila homologues

INSECT MOLECULAR BIOLOGY, Issue 4 2003
V. Filippov
Abstract Insects maintain haemolymph homeostasis under different environmental conditions by modulating the concentrations of Na+, K+ and Cl, ions. One group of proteins involved in ion transport across cell membranes consists of cation-chloride cotransporters that form a family of structurally similar proteins. Although much is known about these proteins in mammalian systems, our understanding of them in insects is lacking. The recent sequencing of two insect genomes, Drosophila and Anopheles, enabled us to identify globally members of the family of cation chloride cotransporters in these insects. Using RT-PCR we monitored the transcription of members of this family in development and in several tissues. Our analyses showed that transcription of these genes differ considerably from the ubiquitously and highly expressed CG5594 gene to the almost silent gene CG31547. Comparison of Drosophila CG12773 and its Aedes homologue AaeCG12773 showed that they have similar transcript expression profiles. Immunohistochemical analysis of AaeCG1277 gene expression revealed that it is highly expressed in the gut of larvae and female adults but not in Malpighian tubules. A more detailed analysis showed that this protein is localized predominantly in the basolateral membrane of these tissues. This expression pattern confirmed the results of RT-PCR analysis. We also created a mutant for one of the genes, CG10413, in Drosophila using P-element excision. Analysis of this mutant showed this protein does not appear to be essential for development. [source]