Influences Growth (influence + growth)

Distribution by Scientific Domains


Selected Abstracts


Cellular iron status influences the functional relationship between microglia and oligodendrocytes

GLIA, Issue 8 2006
X. Zhang
Abstract Previously, we have reported that there is a spatiotemporal relationship between iron accumulation in microglia and oligodendrocytes during normal development and in remyelination following injury. This in vivo observation has prompted us to develop a cell culture model to test the relationship between iron status of microglia and survival of oligodendrocytes. We found that conditioned media from iron-loaded microglia increases the survival of oligodendrocytes; but conditioned media from iron loaded activated microglia is toxic to oligodendrocytes. In the trophic condition, one of the proteins released by iron-loaded microglia is H-ferritin, and transfecting the microglia with siRNA for H-ferritin blocks the trophic response on oligodendrocytes. Lipopolysaccharide (LPS) activation decreases the amount of H-ferritin that is released from microglia and increases the release of the proinflammatory cytokines tumor necrosis factor-, and interleukin-1. LPS activation of iron-enriched microglia results in the activation of NF-kB and greater release of cytokines when compared with that of control microglia; whereas treating microglia with an iron chelator is associated with less NF-kB activation and less release of cytokines. These results indicate that microglia play an important role in iron homoeostasis and that their iron status can influence how microglia influence growth and survival of oligodendrocytes. The results further indicate that ferritin, released by microglia, is a significant source of iron for oligodendrocytes. © 2006 Wiley-Liss, Inc. [source]


Sulfur and nitrogen supply influence growth, product appearance, and glucosinolate concentration of broccoli

JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 1 2007
Ilona Schonhof
Abstract The effects of insufficient and optimal sulfur (S) and nitrogen (N) supply on plant growth and glucosinolate formation were studied under controlled experimental conditions in broccoli "Monaco". Here, we report on the interaction between S and N supply, plant growth, and quality parameters and discuss the relevance of this interaction in relation to crop-management strategies. Broccoli plants supplied with insufficient amounts of S or N showed typical deficiency symptoms and yield decreases. In contrast, total glucosinolate concentrations were high at insufficient N supply, independent of the S level, and low at insufficient S supply in combination with an optimal N supply. This was mainly due to the presence of the alkyl glucosinolates glucoraphanin and glucoiberin. Furthermore, with S concentrations above 6 g (kg DM),1 and an N : S ratio lower than 10:1, the glucosinolate concentrations were on average around 0.33 g (kg fresh matter),1 and differed significantly from those plants characterized by an S concentration below 6 g (kg DM),1 and an N : S ratio above 10:1. In addition, N : S ratios between 7:1 and 10:1 promoted plant yield and enhanced overall appearance. Therefore, to produce broccoli (and potentially other Brassicaceae) with higher crop yields and enhanced product quality in the field, it is vital to establish the optimal S and N nutritional status of the plant and to integrate this information into crop-management strategy programs. [source]


Does soil nitrogen influence growth, water transport and survival of snow gum (Eucalyptus pauciflora Sieber ex Sprengel.) under CO2 enrichment?

PLANT CELL & ENVIRONMENT, Issue 5 2009
BRIAN J. ATWELL
ABSTRACT Eucalyptus pauciflora Sieber ex Sprengel. (snow gum) was grown under ambient (370 µL L,1) and elevated (700 µL L,1) atmospheric [CO2] in open-top chambers (OTCs) in the field and temperature-controlled glasshouses. Nitrogen applications to the soil ranged from 0.1 to 2.75 g N per plant. Trees in the field at high N levels grew rapidly during summer, particularly in CO2 -enriched atmosphere, but suffered high mortality during summer heatwaves. Generally, wider and more numerous secondary xylem vessels at the root,shoot junction in CO2 -enriched trees conferred fourfold higher below-ground hydraulic conductance. Enhanced hydraulic capacity was typical of plants at elevated [CO2] (in which root and shoot growth was accelerated), but did not result from high N supply. However, because high rates of N application consistently made trees prone to dehydration during heatwaves, glasshouse studies were required to identify the effect of N nutrition on root development and hydraulics. While the effects of elevated [CO2] were again predominantly on hydraulic conductivity, N nutrition acted specifically by constraining deep root penetration into soil. Specifically, 15,40% shallower root systems supported marginally larger shoot canopies. Independent changes to hydraulics and root penetration have implications for survival of fertilized trees under elevated atmospheric [CO2], particularly during water stress. [source]


How does shape influence growth?

BIRTH DEFECTS RESEARCH, Issue 4 2002
David R. Genest
No abstract is available for this article. [source]


Prey protein influences growth and decoration building in the orb web spider Argiope keyserlingi

ECOLOGICAL ENTOMOLOGY, Issue 5 2009
SEAN J. BLAMIRES
Abstract. 1. Protein is important for a foraging animal to consume, as it promotes growth and enhances survival, particularly in web-building spiders, which need to invest considerable protein into web building and may trade-off growth for web investment. 2. The influence of dietary protein uptake on growth and web investment was tested in the orb web spider Argiope keyserlingi, by feeding them flies reared on three different media: (1) high protein, (2) low protein, and (3) standard (control) media. There was a negative correlation between protein and energy content of the flies across treatments; flies reared on the high protein media had the highest protein, but lowest energy, while flies reared on the low protein media had the lowest protein but highest energy. 3. It was found that silk investment and web architecture in A. keyserlingi was not affected by diet. Growth and decoration building were both enhanced when spiders were fed a high protein diet. 4. It was concluded that protein intake, rather than energy, influenced both growth and decoration building because: (1) protein intake enhances growth in other animals, (2) protein is essential for silk synthesis, especially aciniform silk, and (3) protein is a limiting factor actively sought by foraging animals in natural environments. [source]


Nutrition influences growth and virulence of the insect-pathogenic fungus Metarhizium anisopliae

FEMS MICROBIOLOGY LETTERS, Issue 2 2005
Farooq A. Shah
Abstract Nutrition influenced growth, sporulation and virulence of the insect pathogenic fungus, Metarhizium anisopliae. Virulent conidia were produced on susceptible insect hosts, 1% yeast extract, 2% peptone, osmotic stress medium (OSM) and CN 10:1 medium. Several strain independent markers were identified that could be used to predict the virulence of M. anisopliae conidia. Virulent conidia typically had high levels of spore bound Pr1, an important cuticle degrading protease, and high germination rates. We also show for the first time that virulent conidia have an endogenous CN ratio below 5.2:1. Real Time PCR revealed that virulent conidia from insects contained significantly higher levels of transcripts of pr1 A and other pathogenicity-related genes than inoculum from artificial media. Of the artificial media studied, 1% yeast extract medium yielded the most virulent conidia, these had higher levels of transcripts of these pathogenicity-related genes than the least virulent conidia from the high conidia yielding CN 35:1 medium (= SDA), however, the levels were significantly lower than those in insect-derived conidia. Our study shows for the first time that the passaged inoculum is virulent irrespective of the original culture medium or insect host. Virulent conidia were consistently produced on OSM even though growth and sporulation were poor. We postulate that starvation conditions, whether in vivo or in vitro, results in de-repression of Pr1 and that elevated levels of this enzyme enhance fungal virulence. [source]


Effects of decreasing soil water content on seminal lateral roots of young maize plants

JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 6 2006

Abstract Soil micropores that contain water at or below field capacity cannot be invaded by seminal or first-order lateral roots of maize plants because their root diameters are larger than 10 ,m. Hence, at soil-water levels below field capacity plant roots must establish a new pore system by displacement of soil particles in order to access soil water. We investigated how decreasing soil water content (SWC) influences growth and morphology of the root system of young maize plants. Plants were grown in rhizotrons 40,cm wide, 50,cm high, and approximately 0.7,cm thick. Five SWC treatments were established by addition of increasing amounts of water to soil and thorough mixing before filling the rhizotrons. No water was added to treatments 1,4 throughout the experiment. Treatment 5 was watered frequently throughout the experiment to serve as a control. Seminal-root length and SWC in soil layers 0,10, 10,20, 20,30, 30,40, and 40,50,cm were measured at intervals of 2,3 d on scanner images by image analysis. At 15 d after planting, for treatments 1,4 shoot dry weight and total root length were directly related to the amount of water added to the soil, and for treatments 4 and 5, total root length and shoot dry weights were similar. Length of seminal roots visible at the transparent surface of the rhizotron for all treatments was highest in the uppermost soil layer and decreased with distance from the soil surface. For all layers, seminal-root elongation rate was at maximum above a SWC of 0.17,cm3,cm,3, corresponding to a matric potential of ,30 kPa. With decreasing SWC, elongation rate decreased, and 20% of maximum seminal root elongation rate was observed below SWC of 0.05,cm3,cm,3. After destructive harvest for treatment 1,4, number of (root-) tips per unit length of seminal root was found uninfluenced over the range of initial SWC from 0.10 to 0.26,cm3,cm,3. However, initial SWC close to the permanent wilting point strongly increased number of tips. Average root length of first-order lateral (FOL) roots increased as initial SWC increased, and the highest length was found for the frequently watered treatment 5. The results of the study suggest that the ability to produce new FOL roots across a wide range of SWC may give maize an adaptive advantage, because FOL root growth can rapidly adapt to changing soil moisture conditions. [source]


Leaf expansion in Phaseolus: transient auxin-induced growth increase

PHYSIOLOGIA PLANTARUM, Issue 4 2007
Christopher P. Keller
Control of leaf expansion by auxin is not well understood. Evidence from short-term exogenous applications and from treatment of excised tissues suggests auxin positively influences growth. Manipulations of endogenous leaf auxin content, however, suggest that long-term auxin suppresses leaf expansion. This study attempts to clarify the growth effects of auxin on unifoliate (primary) leaves of the common bean (Phaseolus vulgaris) by reexamining the response to auxin treatment of both excised leaf strips and attached leaves. Leaf strips, incubated in culture conditions that promoted steady elongation for up to 48 h, treated with 10 ,M,-naphthalene acetic acid (NAA) responded with an initial surge of elongation growth complete within 10 h, followed by insensitivity. A range of NAA concentrations from 0.1 to 300 ,M induced increased strip elongation after 24 and 48 h. Increased elongation and epinastic curvature of leaf strips was found specific to active auxins. Expanding attached unifoliates treated once with aqueous auxin NAA at 1.0 mM showed both an initial surge in growth lasting 4,6 h followed by growth inhibition sustained at least as long as 24 h post-treatment. Auxin-induced inhibition of leaf expansion was associated with smaller epidermal cell area. Together, the results suggest increasing leaf auxin first increases growth and then slows growth through inhibition of cell expansion. Excised leaf strips retain only the initial increased growth response to auxin and not the subsequent growth inhibition, either as a consequence of wounding or as a consequence of isolation from the plant. [source]


The application of ethephon (an ethylene releaser) increases growth, photosynthesis and nitrogen accumulation in mustard (Brassica juncea L.) under high nitrogen levels

PLANT BIOLOGY, Issue 5 2008
N. A. Khan
Abstract Ethephon (2-chloroethyl phosphonic acid), an ethylene-releasing compound, influences growth and photosynthesis of mustard (Brassica juncea L. Czern & Coss.). We show the effect of nitrogen availability on ethylene evolution and how this affects growth, photosynthesis and nitrogen accumulation. Ethylene evolution in the control with low N (100 mg N kg,1 soil) was two-times higher than with high N (200 mg N kg,1 soil). The application of 100,400 ,l·l,1 ethephon post-flowering, i.e. 60 days after sowing, on plants receiving low or high N further increased ethylene evolution. Leaf area, relative growth rate (RGR), photosynthesis, leaf nitrate reductase (NR) activity and leaf N reached a maximum with application of 200 ,l·l,1 ethephon and high N. The results suggest that the application of ethephon influences growth, photosynthesis and N accumulation, depending on the amount of nitrogen in the soil. [source]


Influence of different sources and levels of dietary protein and lipid on the growth, feed efficiency, muscle composition and fatty acid profile of Snakehead Channa striatus (Bloch, 1793) fingerling

AQUACULTURE RESEARCH, Issue 9 2010
Mohammed Aliyu-Paiko
Abstract Nine isoenergetic (18.5 kJ g,1) diets were formulated, in a 3 × 3 factorial design, by varying three levels of dietary protein (350, 400 and 450 g kg,1) at each of three levels of dietary lipid (65, 90 and 115 g kg,1) accordingly. Each diet was hand fed two times daily for 8 weeks to triplicate homogenous groups of eight fish (average weight 3.34 ± 0.02 g) per tank connected to a recirculation system. Results showed that the feed efficiency and growth performance significantly (P<0.05) increased with increasing protein level at the two lower lipid levels (65 and 90 g kg,1), respectively, as indicated by indices such as %weight gain, specific growth rate, protein efficiency ratio, feed conversion ratio and feed intake, but did not at the highest lipid level (115 g kg,1). The muscle polyunsaturated fatty acids (PUFA) content declined with increasing dietary protein level at the lipid levels producing the highest growth, suggesting that the utilization of PUFA influences growth. Whereas the muscle monounsaturated fatty acids level was generally lower than the dietary levels in all the treatments tested, indicating preferential catabolism for energy, the muscle saturated fatty acids level was comparatively higher than in the diets, indicating selective deposition. Docosa hexaenoic acid (22:6n3, DHA), which was very low in the diet and in the initial fish, was higher in the muscle of some of the treatments, indicating the ability of Channa striatus to desaturate and elongate short-chain PUFA to long-chain HUFA, due to the availability of dietary 18:3n3 and 20:5n3 (the precursors for DHA biosynthesis). It could be concluded, based on the results of this trial, that a diet formulated to contain 65 g kg,1 lipid and 450 g kg,1 protein, with a gross energy of 18.5 kJ g,1 and a dietary n3/n6 PUFA ratio of about 0.1, is sufficient to promote good feed efficiency and growth performance in C. striatus fingerling. [source]