Home About us Contact | |||
Inflammatory Foci (inflammatory + focus)
Selected AbstractsMetabolism of the mesoionic compound (MI-D) by mouse liver microsome, detection of its metabolite In Vivo, and acute toxicity in miceJOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 6 2009Silvia Romão Abstract The mesoionic derivative 4-phenyl-5-[4-nitrocinnamoyl]-1,3,4-thiadiazolyl-2-phenylamine chloride (MI-D) has antitumoral and anti-inflammatory effects. In this study, we present aspects of its metabolism and toxicity in mice. MI-D was metabolized in vitro by liver microsome, generating a main product with a much shorter retention time than MI-D in high-performance liquid chromatography (HPLC) analysis but with a spectrum similar to that of the original molecule. Mass spectrometry with electrospray ionization in positive mode analysis of the purified compound by HPLC indicated that the product of metabolism has four additional hydroxyl groups (m/z = 465) compared with MI-D (m/z = 401). The HPLC analyses of plasma and urine samples from mice treated with MI-D showed the presence of the metabolite product. The kinetic parameters Km (19.5 ± 4.5 ,M) and Vmax [1.5 ± 0.4 units of fluorescence/(100 ,g of microsomal protein/mL/s)] were estimated, confirming the metabolism of MI-D and indicating that the reaction follows Michaelis-Menten kinetics. Acute toxicity was established on the basis of an estimation of mean lethal dose (LD-50; 181.2 mg/kg) and histopathological analysis of animals that survived the LD-50 test. Abdominal adhesions, inflammatory foci, and formation of granulomas were observed. Altogether, the results contribute to the advancement of research in support of MI-D as a future chemotherapeutic drug. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:394,405, 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.20303 [source] Moderate Alcohol Consumption Aggravates High-Fat Diet Induced Steatohepatitis in RatsALCOHOLISM, Issue 3 2010Yan Wang Background:, Nonalcoholic steatohepatitis (NASH) develops in the absence of chronic and excessive alcohol consumption. However, it remains unknown whether moderate alcohol consumption aggravates liver inflammation in pre-existing NASH condition. Methods:, Sprague-Dawley rats were first fed ad libitum with Lieber-DeCarli high-fat diet (71% energy from fat) for 6 weeks to induce NASH, as demonstrated previously. Afterwards, these rats were continuously fed with high-fat diet (HFD, 55% total energy from fat) or high fat plus alcohol diet (HFA, 55% energy from fat and 16% energy from alcohol) for an additional 4 weeks. Pathological lesions including fat accumulation and inflammatory foci in liver were examined and graded. Lipid peroxidation and apoptotic hepatocytes in the liver were assessed. The mRNA expressions of tumor necrosis factor-, (TNF,) and TNF receptor 1 (TNF-R1), Fas death receptor (Fas) and Fas ligant (FasL), IL-1, and IL-12 were determined by real-time PCR. Protein levels of total and cleaved caspase-3, CYP2E1, Bax, and Bcl-2 were measured by western blotting. Results:, The number of hepatic inflammatory foci and apoptotic hepatocytes were significantly increased in rats fed with HFA as compared with those in HFD-fed rats. The aggravated inflammatory response and cellular apoptosis mediated by HFA were associated with elevated mRNA expression of Fas/FasL and cleaved caspase-3 protein. Although no significant differences were observed between HFD and HFA groups, the levels of lipid peroxidation, Bax and Bcl-2 protein concentration, and mRNA levels of other inflammatory cytokines were significantly higher in these 2 groups than those in the control group. Conclusions:, These data suggest that even moderate alcohol consumption can cause more hepatic inflammation and cellular apoptosis in a pre-existing NASH condition. [source] Soluble vascular cell adhesion molecule-1 induces human eosinophil migrationALLERGY, Issue 5 2009S. Ueki Background:, Tissue eosinophilia is one of the hallmarks of allergic diseases and Th2-type immune responses including asthma. Adhesion molecules are known to play an important role in the accumulation of eosinophils in allergic inflammatory foci, and they contribute to eosinophil activation. Elevated levels of the soluble forms of adhesion molecules in the body fluid of asthmatic patients have been observed, although their pathophysiological significance remains to be fully elucidated. Methods:, Peripheral blood eosinophils were purified, and the effect of soluble vascular cell adhesion molecule-1 (sVCAM-1) on eosinophil migration was investigated using in vitro systems. Results:, We found that sVCAM-1 (1 to 10 ,g/ml) induced eosinophil chemotaxis, rather than chemokinesis, in a concentration-dependent fashion. In addition, sVCAM-1 induced cell shape change and actin polymerization, which are necessary for cell movement. Manipulations with very late antigen (VLA)-4-neutralizing antibody and signal inhibitors indicated that the sVCAM-1-induced chemotaxis was mediated through ligand-dependent activation of tyrosine kinase Src, p38 mitogen-activated protein kinase (MAPK), and extracellular signal-regulated kinase (ERK) MAPK. Rapid phosphorylation of these signaling molecules was observed using a bead-based multiplex assay. Conclusion:, Our results raise the possibility of sVCAM-1 in the fluid phase as a significant contributor to the heightened eosinophilic inflammatory response. [source] Adhesion molecule expression in experimental myositisMUSCLE AND NERVE, Issue 3 2002Tomoko Ito MD Abstract Experimental allergic myositis (EAM) in Lewis rats, induced with partially purified myosin, is regarded as a model of human polymyositis. To clarify the role of adhesion molecules in the pathogenesis of EAM in Lewis rats, we investigated intramysial expressions of the intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1, and the serum level of soluble ICAM-1 in EAM rats. All the EAM rat muscles had scattered inflammatory foci, as well as cell infiltration and necrosis, by week 4 after the initial immunization (i.e., day 0 after the last immunization). As compared with the control muscles, ICAM-1 and VCAM-1 were strongly expressed immunohistochemically in the endothelium of vessels in the endomysium and perimysium, and to lesser extents in the inflammatory infiltrates and on the sarcolemma of nonnecrotic muscle fibers adjacent to the inflammatory infiltrates or invaded muscle fibers. ICAM-1 in the muscle extracts and sera from EAM rats increased on each test day, as compared with extracts from the normal controls. The values peaked on day 0 after the last immunization, then gradually decreased with time. ICAM-1 elevations in the muscle extracts were correlated with the percent of sections that had inflammatory lesions (P = 0.032) and the histological scores (P = 0.005) on day 0, whereas there was no significance on days 3 and 7. These findings suggest that the adhesion molecules ICAM-1 and VCAM-1 increase in the early stage of EAM, and function in the initiation of the inflammatory process of myositis. © 2002 Wiley Periodicals, Inc. Muscle Nerve 25: 000,000, 2002 [source] Autopsy case of neuro-Behçet's disease with multifocal neutrophilic perivascular inflammationNEUROPATHOLOGY, Issue 6 2006Yoshifumi Arai We report here an autopsy case of neuro-Behçet's disease. The patient was a 28-year-old man, who developed a slight fever, right uveitis, and right sensory neural hearing loss at the age of 25. These symptoms relapsed repeatedly despite treatment. Eventually he was admitted to hospital because of progressing neurological deficits such as pyramidal symptoms, somatic sensorial and autonomic disorders, and bulbar palsy. The patient's condition deteriorated and he died of heart failure. Total clinical course was about three years. In postmortem examination, various-sized necrotic foci, often accompanied by gliosis and foamy macrophage infiltration, were scattered in the diencephalic region and brain stem. Meningitis was observed on the ventral side of the brain stem as well as inferior cerebral surface. Non-bacterial or non-fungal acute perivascular inflammatory foci were also present in the brain stem and cerebellar parenchyma. These histopathological findings suggest that a destructive multifocal neutrophilic inflammation might have caused the neurological deficits. Perivascular inflammation might be important to understanding the pathogenesis of neuro-Behçet's disease. [source] Cytokine-regulated accumulation of eosinophils in inflammatory diseaseALLERGY, Issue 8 2004M. Lampinen The role of cytokines in the accumulation of eosinophil granulocytes in inflamed tissue has been studied extensively during recent years, and these molecules have been found to participate throughout the whole process of eosinophil recruitment. Haematopoietic cytokines such as IL-3, IL-5 and GM-CSF stimulate the proliferation and differentiation of eosinophils in the bone marrow, and the release of mature eosinophils from the bone marrow into the blood is probably promoted by IL-5. Priming of eosinophils in the blood following, for example, allergen challenge is performed mainly by IL-3, IL-5 and GM-CSF. An important step in the extravasation of eosinophils is their adhesion to the vascular endothelium. Adhesion molecules are upregulated by, e.g. IL-1, IL-4, TNF- , and IFN- , and the same cytokines may also increase the affinity of adhesion molecules both on eosinophils and endothelial cells. Finally, a number of cytokines have been shown to act as eosinophil chemotactic factors, attracting the cells to the inflammatory focus in the tissue. Some of the most important eosinophil chemoattractant cytokines are IL-5, IL-8, RANTES, eotaxin, eotaxin-2, eotaxin-3, MCP-3, MCP-4 and TNF- ,. Th2 cells, mast cells and epithelial cells are important sources of proinflammatory cytokines, but in recent years, the eosinophils have also been recognized as cytokine-producing and thereby immunoregulatory cells. The aim of this paper is to review the role of cytokines in the process of eosinophil recruitment in asthma, allergy and ulcerative colitis. [source] Bacterial translocation in a non-lethal rat model of peritonitisCOLORECTAL DISEASE, Issue 5 2001V. Yao Background Bacterial translocation from the gut may occur under a variety of different clinical circumstances and has been implicated in the development of multiple organ failure. The aim of this study was to determine the distribution of bacterial translocation occurring in a model of chemically induced peritonitis. We also sought to document the degree of the associated immune and inflammatory response. Methods Though a midline laparotomy, rats were injected with 5 mg of zymosan (in 0.2 ml of saline) into the subomental space. After 4, 18, 24, 48 and 96 h, a number of endpoints evaluated: intraperitoneal cellular influx, TNF-, and interleukin-6 concentrations and myeloperoxidase activity. Bacterial cultures were initiated from the free peritoneal fluid, mesenteric lymph nodes, liver, lung, and kidney. Imprints were also made of the peritoneal mesothelial surface to determine its integrity. Results When comparing rats injected with zymosan with the controls, there was evidence of a peritoneal inflammatory response within 4 hours. Facultative gram negative bacteria were found to be growing in the mesenteric lymph nodes and in the peritoneal fluid at 48 h. Anaerobic organisms were also cultured from the peritoneal fluid at 48 h. No organisms were cultured from the liver, lung or kidneys. In addition there was a significant increase in intraperitoneal cell numbers (predominantly neutrophils, P < 0.05), myeloperoxidase activity (P < 0.05) and TNF-, and IL-6 concentrations (P < 0.05). There was extensive loss of the peritoneal mesothelial cells. The peritoneal inflammatory changes and bacterial translocation had resolved by 96 h. Conclusion Bacterial translocation can be induced by the presence of an acute inflammatory focus in the peritoneal cavity. The translocation and inflammatory changes were associated with extensive loss of mesothelial cells. Nonetheless, these changes all resolved, indicating that the peritoneal cavity has a significant capacity to deal with such insults. A clearer understanding of the cellular and molecular events involved in the resolution phase could lead to improvements in the treatment of peritonotis. [source] |