Inflamed Tissue (inflamed + tissue)

Distribution by Scientific Domains
Distribution within Medical Sciences


Selected Abstracts


CD4+CD25+ regulatory T cells suppress contact hypersensitivity reactions by blocking influx of effector T cells into inflamed tissue

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 11 2006
Sabine Ring Dr.
Abstract CD4+CD25+ regulatory T cells (Treg) exert suppressive functions on effector T cells in vitro and in vivo. However, the exact cellular events that mediate this inhibitory action remain largely unclear. To elucidate these events, we used intravital microscopy in a model of contact hypersensitivity (CHS) and visualized the leukocyte-endothelium interaction at the site of antigen challenge in awake C57BL/6 mice. Injection of Treg i.v. into sensitized mice at the time of local hapten challenge significantly inhibited rolling and adhesion of endogenous leukocytes to the endothelium. A similar inhibition of leukocyte recruitment could be recorded after injection of Treg-derived tissue culture supernatant. Thus, these data indicate that soluble factors may account for the suppressive effects. Accordingly we found that IL-10, but not TGF-,, was produced by Treg upon stimulation and that addition of anti-IL-10 antibodies abrogated the suppressive effects of Treg and tissue culture supernatant in CHS reactions. Moreover, CD4+CD25+ T cells isolated from IL-10,/, mice were not able to suppress the immune response induced by hapten treatment in C57BL/6 mice. In conclusion, our data suggest that cytokine-dependent rather than cell-cell contact-dependent mechanisms play a pivotal role in the suppression of CHS reactions by Treg in vivo. [source]


Microbial diversity of inflamed and noninflamed gut biopsy tissues in inflammatory bowel disease

INFLAMMATORY BOWEL DISEASES, Issue 6 2007
Shadi Sepehri MD
Abstract Background: Inflammatory bowel disease (IBD) is a chronic gastrointestinal condition without any known cause or cure. An imbalance in normal gut biota has been identified as an important factor in the inflammatory process. Methods: Fifty-eight biopsies from Crohn's disease (CD, n = 10), ulcerative colitis (UC, n = 15), and healthy controls (n = 16) were taken from a population-based case-control study. Automated ribosomal intergenic spacer analysis (ARISA) and terminal restriction fragment length polymorphisms (T-RFLP) were used as molecular tools to investigate the intestinal microbiota in these biopsies. Results: ARISA and T-RFLP data did not allow a high level of clustering based on disease designation. However, if clustering was done based on the inflammation criteria, the majority of biopsies grouped either into inflamed or noninflamed groups. We conducted statistical analyses using incidence-based species richness and diversity as well as the similarity measures. These indices suggested that the noninflamed tissues form an intermediate population between controls and inflamed tissue for both CD and UC. Of particular interest was that species richness increased from control to noninflamed tissue, and then declined in fully inflamed tissue. Conclusions: We hypothesize that there is a recruitment phase in which potentially pathogenic bacteria colonize tissue, and once the inflammation sets in, a decline in diversity occurs that may be a byproduct of the inflammatory process. Furthermore, we suspect that a better knowledge of the microbial species in the noninflamed tissue, thus before inflammation sets in, holds the clues to the microbial pathogenesis of IBD. (Inflamm Bowel Dis 2007) [source]


In GERD patients, mucosal repair associated genes are upregulated in non-inflamed oesophageal epithelium

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 5 2009
D. R. De Vries
Abstract Previous studies addressing the effects of acid reflux and PPI therapy on gene expression in oesophageal epithelium concentrated on inflamed tissue. We aimed to determine changes in gene expression in non-inflamed oesophageal epithelium of GERD patients. Therefore, we included 20 GERD patients with pathological total 24-hr acid exposure of 6,12% and SAP , 95%. Ten patients discontinued PPI treatment (PPI-), 10 took pantoprazole 40 mg bid (PPI+). Ten age/sex-matched healthy controls were recruited. Biopsies were taken from non-inflamed mucosa 6 cm and 16 cm proximal to the squamocolumnar junction (SCJ). Gene expression profiling of biopsies from 6 cm was performed on Human Genome U133 Plus 2.0 arrays (Affymetrix). Genes exhibiting a fold change >1.4 (t-test P -value < 1E, 4) were considered differentially expressed. Results were confirmed by real-time RT-PCR. In PPI- patients, 92 microarray probesets were deregulated. The majority of the corresponding genes were associated with cell,cell contacts, cytoskeletal reorganization and cellular motility, suggesting facilitation of a migratory phenotype. Genes encoding proteins with anti-apoptotic or anti-proliferative functions or stress-protective functions were also deregulated. No probesets were deregulated in PPI+ patients. QPCR analysis of 20 selected genes confirmed most of the deregulations in PPI- patients, and showed several deregulated genes in PPI+ patients as well. In the biopsies taken at 16 cm QPCR revealed no deregulations of the selected genes. We conclude that upon acid exposure, oesophageal epithelial cells activate a process globally known as epithelial restitution: up-regulation of anti-apoptotic, anti-oxidant and migration associated genes. Possibly this process helps maintaining barrier function. [source]


Review: Energy regulation and neuroendocrine,immune control in chronic inflammatory diseases

JOURNAL OF INTERNAL MEDICINE, Issue 6 2010
R. H. Straub
Abstract., Straub RH, Cutolo M, Buttgereit F, Pongratz G (University Hospital Regensburg, Regensburg, Germany; University of Genova, Genova, Italy; and Charité University Medicine Berlin, Berlin, Germany). Energy regulation and neuroendocrine,immune control in chronic inflammatory diseases (Review). J Intern Med 2010; 267:543,560. Energy regulation (EnR) is most important for homoeostatic regulation of physiological processes. Neuroendocrine pathways are involved in EnR. We can separate factors that provide energy-rich fuels to stores [parasympathetic nervous system (PSNS), insulin, insulin-like growth factor-1, oestrogens, androgens and osteocalcin] and those that provide energy-rich substrates to consumers [sympathetic nervous system (SNS), hypothalamic,pituitary,adrenal axis, thyroid hormones, glucagon and growth hormone]. In chronic inflammatory diseases (CIDs), balanced energy-rich fuel allocation to stores and consumers, normally aligned with circadian rhythms, is largely disturbed due to the vast fuel consumption of an activated immune system (up to 2000 kJ day,1). Proinflammatory cytokines such as tumour necrosis factor or interleukins 1, and 6, circulating activated immune cells and sensory nerve fibres signal immune activation to the rest of the body. This signal is an appeal for energy-rich fuels as regulators are switched on to supply energy-rich fuels (,energy appeal reaction'). During evolution, adequate EnR evolved to cope with nonlife-threatening diseases, not with CIDs (huge negative selection pressure and reduced reproduction). Thus, EnR is inadequate in CIDs leading to many abnormalities, including sickness behaviour, anorexia, hypovitaminosis D, cachexia, cachectic obesity, insulin resistance, hyperinsulinaemia, dyslipidaemia, fat deposits near inflamed tissue, hypoandrogenaemia, mild hypercortisolaemia, activation of the SNS (hypertension), CID-related anaemia and osteopenia. Many of these conditions can contribute to the metabolic syndrome. These signs and symptoms become comprehensible in the context of an exaggerated call for energy-rich fuels by the immune system. We propose that the presented pathophysiological framework may lead to new therapeutical approaches and to a better understanding of CID sequence. [source]


Disorder-specific changes in innervation in oral lichen planus and lichenoid reactions

JOURNAL OF ORAL PATHOLOGY & MEDICINE, Issue 8 2000
Sirkku Niissalo
Abstract: The peripheral nervous system was analysed in the oral mucosa of eight patients with oral lichen planus (OLP), five with a lichenoid reaction (LR) and three with mild chronic inflammation (MCI), by morphometric analysis of nerve fibres containing immunoreactive PGP 9.5, substance P (SP), calcitonin gene-related peptide (CGRP), vasoactive intestinal polypeptide (VIP), or C-flanking peptide of neuropeptide Y (CPON). Overall nerve fibre density was higher in OLP (P=0.039) and LR (P=0.026) compared with healthy oral mucosa and was compatible with sprouting and collateral formation. In contrast to the innervation visualized with structural nerve fibre-marker PGP 9.5, the densities of neuropeptide-immunoreactive nerves were low in inflamed tissue. This is consistent with depletion via local release. Retraction and local loss of innervation were found in areas coinciding with the most severe inflammation and basal membrane (BM) damage. Interestingly, LR showed a twenty-eight-fold loss of post-ganglionic CPON-ir sympathetic nerve fibres (P=0.044). In LR, CPON-ir innervation was markedly lower than in OLP. Finally, the pattern of innervation in relation to inflammatory cell infiltrates and tissue structures differed between OLP and LR. In conclusion, the peripheral nervous system is implicated in the immunopathogenesis of lichen planus and lichenoid reactions, with a disorder-specific difference in this involvement. [source]


Investigations into the antinociceptive activity of Sapindus trifoliatus in various pain models

JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 5 2004
D. K. Arulmozhi
The effect of the aqueous extract of Sapindus trifoliatus (ST) on chemical, thermal-induced pain, nitroglycerin-induced hyperalgesia and pain on inflamed tissue was investigated. The extract (20 and 100 mg kg,1, i.p.) significantly inhibited acetic-acid-induced abdominal constrictions, formalin-induced pain licking and hotplate-induced pain in mice. Furthermore, the extract significantly increased the response latencies of nitroglycerin-induced hyperalgesia by the tail-flick method and mechanical pain on carrageenan-induced inflamed paw in rats. The data suggest that ST has an inhibitory activity on both peripheral and central pain mechanisms and has a modulatory role in NO-mediated nociceptive transmission. [source]


Inflammatory Pain Reduction In Rats By Local Treatment With oATP, A Selective Inhibitor Of P2X7 ATP Receptor

JOURNAL OF THE PERIPHERAL NERVOUS SYSTEM, Issue 1 2001
G Dell'Antonio
Peptide neurotransmitters, as substance P or ATP, are released during inflammatiory processes by the nerve endings of sensory fibers. ATP is also released from the cytoplasm of damaged cells at the site of inflammation. It acts at the level of many P2X subtypes of purinoreceptors. The receptor for extracellular ATP named P2Z/P2X7 is selectively blocked by the periodate oxidized ATP (oATP). We have hypothesized that P2X subunits present on peripheral sensory nerve terminals, able to initiate a nociceptive signal, could be blocked by local treatment with oATP, so inducing pain relief. Male inbred Fisher rats weighing about 250 g were used. Unilateral inflammation into rat hind paw was induced by intraplantar injection of Freund's complete adjuvant (FCA). The following signs of inflammation, from 3 to 48 h after FCA injection, were detected: increased paw volume, increased paw temperature and hyperalgesia. The latter was evaluated using an algesiometric test wich measured the paw pressure threshold (PPT, expressed in g). We treated some rats, bearing paw inflammation by 12 h, with local injection of 56 ,M oATP. We showed a significant reduction of hyperalgesia in treated rats (PPT = 190 ± 2.3 in inflamed paw of oATP treated vs. PPT = 60 ± 1.6 in inflamed paw of untreated rats, at 60 min following oATP innoculation). We showed also that treatment with oATP was more efficient than treatment with diclofenac in reducing local inflammatory pain (PPT expressed as percentage of the maximum possible effect = 60 ± 0.5, at 120 min following intraplantar administration of oATP, vs. 25 ± 1.9 at the same time following intraplantar administration of diclofenac). The use of polyclonal antibody anti P2X7 receptor to perform immunohistochemical analysis of inflamed tissue, showed a reduction of receptor expression at the level of nerve endings in sections obtained from rat paw treated with oATP with respect to sections obtained from untreated rats. Such an effect was independent on the recruitment of immunocytes in inflamed tissue. Our results demonstrate that ATP exerts a key role in the pathophysiology of peripheral inflammation and that oATP may be effective in treating inflammatory pain. [source]


Chemokine receptor antagonists: a novel therapeutic approach in allergic diseases

ALLERGY, Issue 12 2004
J. Elsner
The aim of this review is to give an overview of the role of chemokines, particularly ligands of the CC chemokine receptor CCR3, in allergic diseases and to show the new concept in the treatment of allergies using chemokine receptor antagonists. Allergic diseases such as allergic asthma, allergic rhinitis and atopic dermatitis are characterized by a complex interaction of different cell types and mediators. Among this, Th2 cells, mast cells, basophils and eosinophils are found in the inflamed tissue due to the attraction of chemokines. Of all the known chemokine receptors, the chemokine receptor CCR3 seems to play the major role in allergic diseases which is supported by the detection of this receptor on the cell types mentioned above. Therefore, academic and industrial research focus on compounds to block this receptor. To date, certain chemokine receptor antagonists derived from peptides and small molecules exist to block the chemokine receptor CCR3. However, the in vivo data about these compounds and the mechanisms of receptor interaction are poorly understood, as yet. For the development of additional chemokine receptor antagonists, more details about the interaction between the ligands and their receptors are required. Therefore, additional studies will lead to the identification of novel CCR3 chemokine receptor antagonists, which can be therapeutically used in allergic asthma, allergic rhinitis, and atopic dermatitis. [source]


Cytokine-regulated accumulation of eosinophils in inflammatory disease

ALLERGY, Issue 8 2004
M. Lampinen
The role of cytokines in the accumulation of eosinophil granulocytes in inflamed tissue has been studied extensively during recent years, and these molecules have been found to participate throughout the whole process of eosinophil recruitment. Haematopoietic cytokines such as IL-3, IL-5 and GM-CSF stimulate the proliferation and differentiation of eosinophils in the bone marrow, and the release of mature eosinophils from the bone marrow into the blood is probably promoted by IL-5. Priming of eosinophils in the blood following, for example, allergen challenge is performed mainly by IL-3, IL-5 and GM-CSF. An important step in the extravasation of eosinophils is their adhesion to the vascular endothelium. Adhesion molecules are upregulated by, e.g. IL-1, IL-4, TNF- , and IFN- , and the same cytokines may also increase the affinity of adhesion molecules both on eosinophils and endothelial cells. Finally, a number of cytokines have been shown to act as eosinophil chemotactic factors, attracting the cells to the inflammatory focus in the tissue. Some of the most important eosinophil chemoattractant cytokines are IL-5, IL-8, RANTES, eotaxin, eotaxin-2, eotaxin-3, MCP-3, MCP-4 and TNF- ,. Th2 cells, mast cells and epithelial cells are important sources of proinflammatory cytokines, but in recent years, the eosinophils have also been recognized as cytokine-producing and thereby immunoregulatory cells. The aim of this paper is to review the role of cytokines in the process of eosinophil recruitment in asthma, allergy and ulcerative colitis. [source]


Nasal Interleukin-5, Immunoglobulin E, Eosinophilic Cationic Protein, and Soluble Intercellular Adhesion Molecule-1 in Chronic Sinusitis, Allergic Rhinitis, and Nasal Polyposis

THE LARYNGOSCOPE, Issue 6 2000
Matthias F. Kramer MD
Abstract Objective To compare concentrations of interleukin-5 (IL-5), immunoglobulin E (IgE), eosinophilic cationic protein (ECP), and soluble intercellular adhesion molecule-1 (sICAM-1) in nasal secretion and serum of patients with chronic nonallergic sinusitis, allergic rhinitis, and nonallergic nasal polyposis to obtain information about the pathogenesis of these diseases. Methods Nasal secretion and serum were analyzed by routine enzyme-linked immunosorbent assay techniques. Nineteen patients with chronic nonallergic sinusitis, 24 patients with seasonal allergic rhinitis, and 18 patients with nonallergic nasal polyposis were included in the study. Eight healthy, nonallergic probands served as control subjects. Results Significantly elevated concentrations of IL-5 (5-fold, P < .05) and IgE (15-fold, P < .01) were detected in nasal secretion of patients with allergic rhinitis (IL-5, 51.8 ± 13.2 pg/mL; IgE, 41.9 ± 20.9 kU/L) or nonallergic nasal polyposis (IL-5, 57.9 ± 36.9 pg/mL; IgE, 40.5 ± 20.2 kU/L) compared with controls (IL-5, 10.6 ± 7.8 pg/mL; IgE, 2.8 ± 0.5 kU/L) or with patients with chronic nonallergic sinusitis (IL-5, 16.5 ± 13.2 pg/mL; IgE, 5.4 ± 3.1 kU/L). There were no significant differences between patients with allergic rhinitis and those with nonallergic nasal polyposis. Concentrations of ECP were significantly elevated (sixfold, P < .01) in patients with allergic rhinitis (297.8 ng/mL ± 173.1) compared with controls (52.4 ± 28.0 ng/mL) or patients with chronic nonallergic sinusitis (44.8 ± 40.1 ng/mL), whereas twofold higher concentrations (not significant) of ECP were observed in patients with nonallergic nasal polyposis (107.1 ± 26.6 ng/mL). Significantly elevated concentrations of sICAM-1 in nasal secretion (threefold, P < .05) were detected only in patients with chronic nonallergic sinusitis (79.4 ± 45.6 ng/mL). The elevated sICAM-1 nasal secretion values in this group correlated significantly (P < .05) to the serum values. Conclusions Equally elevated concentrations of IL-5 and IgE in patients with allergic rhinitis and nonallergic nasal polyposis implicated similar pathogenic processes in both diseases. Whereas the pathogenesis of allergic rhinitis is IgE-specific, the pathogenesis of nasal polyps is not as clear. IL-5 was suggested to play a pivotal role in tissue eosinophilia, which was confirmed by data in the present study. Elevated concentrations of ECP were suggested to result from tissue eosinophilia,a characteristic of both diseases. Elevated concentrations of sICAM-1 in patients with chronic nonallergic sinusitis pointed to its key role in the recruitment of neutrophils into the inflamed tissue, whereas an important role in eosinophil recruitment was ruled out. [source]


Indocyanine green,enhanced imaging of antigen-induced arthritis with an integrated optical imaging/radiography system,

ARTHRITIS & RHEUMATISM, Issue 8 2010
Reinhard Meier
Objective To evaluate a combined indocyanine green,enhanced optical imaging/radiography system for the detection of arthritic joints in a rat model of antigen-induced arthritis. Methods Arthritis of the knee and ankle joints was induced in 6 Harlan rats, using peptidoglycan,polysaccharide polymers. Three rats served as untreated controls. Optical imaging of the knee and ankle joints was done with an integrated optical imaging/radiography system before and up to 24 hours following intravenous injection of 10 mg/kg indocyanine green. The fluorescence signal intensities of arthritic and normal joints were compared for significant differences, using generalized estimating equation models. Specimens of knee and ankle joints were further processed and evaluated by histology. Results Immediately after administration, indocyanine green provided a significant increase in the fluorescence signal of arthritic joints compared with baseline values (P < 0.05). The fluorescence signal of arthritic joints was significantly higher compared with that of nonarthritic control joints at 1,720 minutes after intravenous injection (P < 0.05). Fusion of indocyanine green,enhanced optical imaging and radiography allowed for anatomic coregistration of the inflamed tissue with the associated joint. Hematoxylin and eosin staining confirmed marked synovial inflammation of arthritic joints and the absence of inflammation in control joints. Conclusion Indocyanine green,enhanced optical imaging is a clinically applicable tool for detection of arthritic tissue. Using relatively high doses of indocyanine green, long-term enhanced fluorescence of arthritic joints can be achieved. This may facilitate simultaneous evaluations of multiple joints in a clinical setting. Fusion of indocyanine green,enhanced optical imaging scans with radiography increases anatomic resolution. [source]


A novel heat-shock protein coinducer boosts stress protein Hsp70 to activate T cell regulation of inflammation in autoimmune arthritis

ARTHRITIS & RHEUMATISM, Issue 4 2010
Lotte Wieten
Objective Stress proteins, such as members of the heat-shock protein (HSP) family, are up-regulated by cells in inflamed tissue and can be viewed functionally as "biomarkers" for the immune system to monitor inflammation. Exogenous administration of stress proteins has induced immunoregulation in various models of inflammation and has also been shown to be effective in clinical trials in humans. This study was undertaken to test the hypothesis that boosting of endogenous HSP expression can restore effective immunoregulation through T cells specific for stress proteins. Methods Stress protein expression was manipulated in vivo and in vitro with a food component (carvacrol), and immune recognition of stress proteins was studied. Results Carvacrol, a major compound in the oil of many Origanum species, had a notable capacity to coinduce cellular Hsp70 expression in vitro and, upon intragastric administration, in Peyer's patches of mice in vivo. As a consequence, carvacrol specifically promoted T cell recognition of endogenous Hsp70, as demonstrated in vitro by the activation of an Hsp70-specific T cell hybridoma and in vivo by amplified T cell responses to Hsp70. Carvacrol administration also increased the number of CD4+CD25+FoxP3+ T cells, systemically in the spleen and locally in the joint, and almost completely suppressed proteoglycan-induced experimental arthritis. Furthermore, protection against arthritis could be transferred with T cells isolated from carvacrol-fed mice. Conclusion These findings illustrate that a food component can boost protective T cell responses to a self stress protein and down-regulate inflammatory disease, i.e., that the immune system can respond to diet. [source]


Infiltrating cells, related cytokines and chemokine receptors in lesional skin of patients with dermatomyositis

BRITISH JOURNAL OF DERMATOLOGY, Issue 4 2004
M. Caproni
Summary Background, There have been only two reports on immunophenotypic characterization in the cutaneous lesions of dermatomyositis (DM) that emphasize the importance of the infiltrating CD4+ T lymphocytes. Objectives, To characterize the immunophenotype of the cells that infiltrate the lesional skin of DM and to evaluate the possible T-helper (Th) polarization Th1/Th2 through detection of specific cytokines, chemokine receptors and markers of cellular activation. Methods, Skin biopsy specimens derived from pathognomonic lesions (Gottron's papules and Gottron's sign) of eight patients with DM were immunostained with a large panel of monoclonal antibodies to CD3, CD4, CD8, myeloperoxidase (MPO), eosinophil cationic protein, tryptase, CD40, CD40 ligand (CD40L), HLA-DR, interleukin (IL)-2, IL-4, IL-5, IL-13, interferon-,, tumour necrosis factor-,, receptor 3 for CXC chemokines (CXCR3) and receptor 3 for CC chemokines, using the alkaline phosphatase,antialkaline phosphatase method. Control specimens were obtained from five healthy subjects and from six patients with discoid lupus erythematosus. Results, Activated CD4+ Th lymphocytes (HLA-DR+ CD40L+) were the principal infiltrating cells in the lesional skin of DM; the CD4/CD8 ratio was approximately 2·5. A mixed Th1/Th2 profile and higher Th1 cytokine production together with significant staining for CXCR3 were detected. Neutrophil granulocytes were the second most abundant population; eosinophil granulocytes were very poorly represented. Conclusions, Activated CD4+ T cells presumably mediate the main pathogenetic mechanisms in pathognomonic skin lesions. The interaction between CD40 and CD40L could be an important mechanism of cellular activation in cutaneous immune-mediated inflammation by induction of secretion of proinflammatory cytokines and chemokines. Neither Th1 nor Th2 clear polarization was found, although there was a slight Th1 prevalence. There was a significant quantity of MPO+ cells (neutrophil granulocytes) in the inflamed tissue, and they might have a role in sustaining the chronic inflammation. [source]


Co-production of vascular endothelial cadherin and inducible nitric oxide synthase by endothelial cells in periapical granuloma

INTERNATIONAL ENDODONTIC JOURNAL, Issue 3 2006
S. Hama
Abstract Aim, To clarify the mechanisms of inflammatory cell migration in human periapical granulomas by examining vascular endothelial (VE) cadherin and inducible nitric oxide synthase (iNOS)-producing cells. Methodology, Periapical tissues were obtained from patients during endodontic surgery and were divided into two portions. After fixing the tissues with acetone or 4% paraformaldehyde in phosphate-buffered saline, 5- ,m-thick paraffin or cryostat sections were prepared, respectively. The paraffin sections of the inflamed tissues were evaluated histologically with haematoxylin,eosin stains. Cryostat sections of the tissue, diagnosed as periapical granulomas, were then examined by either immunohistochemistry using anti-human VE-cadherin or iNOS antibodies (Abs) for the characterization of infiltrating cells. In addition, co-localization of VE-cadherin and iNOS production was also analysed by two-colour immunofluorescence image analysis. Results, Endothelial cells were strongly stained with iNOS Abs. Macrophages, lymphocytes, polymorphonuclear leucocytes and fibroblasts also exhibited iNOS production. These iNOS-positive cells accumulated around the blood vessels. On the other hand, VE-cadherin production was exhibited in only endothelial cells. Two-colour immunofluorescence image analysis using VE-cadherin and iNOS Abs demonstrated that iNOS-producing endothelial cells also showed VE-cadherin production. Conclusions, Vascular endothelial-cadherin produced by endothelial cells could be regulated by iNOS-producing cells in periapical granulomas and might play a pivotal role in vascular permeability. [source]


CC Chemokine ligand 17 in periodontal diseases: expression in diseased tissues and production by human gingival fibroblasts

JOURNAL OF PERIODONTAL RESEARCH, Issue 4 2008
Y. Hosokawa
Background and Objective:, It has been reported that T helper 2 (Th2) cells are related to exacerbation of periodontal disease. However, it is uncertain how the migration of Th2 cells is controlled. In this study, we examined the expression of CC chemokine ligand 17 (CCL17), which is a Th2 chemokine, in periodontal tissues. Moreover, we investigated the effects of cytokines and toll-like receptor (TLR) ligands on the production of CCL17 by human gingival fibroblasts (HGFs). Material and Methods:, We used immunohistochemistry and reverse transcriptase-polymerase chain reaction (RT-PCR) to detect CCL17 in periodontal tissues. HGFs were exposed to cytokines and TLR ligands. Expression of CCL17 was examined by RT-PCR and enzyme-linked immunosorbent assay. We used signal transduction inhibitors in some experiments. Results:, Both CCL17 and its receptor, CC chemokine receptor 4 (CCR4), were expressed in diseased periodontal tissues. A combination of tumour necrosis factor , (TNF-,) and interleukin (IL)-4/IL-13 increased CCL17 expression. Moreover, treatment of HGFs with a low dose of interferon-, (IFN-,) in combination with TNF-, and IL-4 or IL-13 had synergistic effects on the production of CCL17, whereas a high dose of IFN-, inhibited CCL17 production. Furthermore, Escherichia coli (E. coli) lipopolysaccharide (TLR4 ligand) and Pam3CSK4 (TLR2 ligand) inhibited CCL17 production by TNF-, + IL-4-stimulated HGFs, while CpG DNA (TLR9 ligand) enhanced TNF-, + IL-4 induced-CCL17 production by HGFs. Furthermore, a c-Jun NH2 terminal kinase (JNK) inhibitor, a phosphatidylinositol-3-kinase (PI3K) inhibitor and a nuclear factor ,B (NF-,B) inhibitor inhibited CCL17 production by HGFs. Conclusion:, These results suggest that the CCL17 produced by HGFs may be involved in the migration of Th2 cells into inflamed tissues, and provide evidence that CCL17 production is controlled by cytokines and TLR ligands in periodontal disease. [source]


Subproteome analysis of the neutrophil cytoskeleton

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 7 2009
Ping Xu
Abstract Neutrophils play a key role in the early host-defense mechanisms due to their capacity to migrate into inflamed tissues and phagocytose microorganisms. The cytoskeleton has an essential role in these neutrophil functions, however, its composition is still poorly understood. We separately analyzed different cytoskeletal compartments: cytosolic skeleton, phagosome membrane skeleton, and plasma membrane skeleton. Using a proteomic approach, 138 nonredundant proteins were identified. Proteins not previously known to associate with the skeleton were: n -acetylglucosamine kinase, phosphoglycerate mutase 1, prohibitin, ficolin-1, phosphogluconate dehydrogenase, glucosidase, transketolase, major vault protein, valosin-containing protein, aldehyde dehydrogenase, and lung cancer-related protein-8 (LCRP8). The majority of these proteins can be classified as energy metabolism enzymes. Such a finding was interesting because neutrophil energy metabolism is unusual, mainly relying on glycolysis. The enrichment of phosphoglycerate mutase in cytosolic skeleton was additionally indicated by the use of Western blotting. This is the broadest subcellular investigation to date of the neutrophil cytoskeletal proteome and the first proteomic analysis in any cell type of the phagosome skeleton. The association of metabolic enzymes with cytoskeleton is suggestive of the importance of their localized enrichment and macromolecular organization in neutrophils. [source]


Synaptic facilitation and enhanced neuronal excitability in the submucosal plexus during experimental colitis in guinea-pig

THE JOURNAL OF PHYSIOLOGY, Issue 3 2005
Alan E. Lomax
Intestinal secretion is regulated by submucosal neurones of the enteric nervous system. Inflammation of the intestines leads to aberrant secretory activity; therefore we hypothesized that the synaptic and electrical behaviours of submucosal neurones are altered during colitis. To test this hypothesis, we used intracellular microelectrode recording to compare the excitability and synaptic properties of submucosal neurones from normal and trinitrobenzene sulphonic acid (TNBS)-inflamed guinea-pig colons. Inflammation differentially affected the electrophysiological characteristics of the two functional classes of submucosal neurones. AH neurones from inflamed colons were more excitable, had shorter action potential durations and reduced afterhyperpolarizations. Stimulus-evoked fast and slow excitatory postsynaptic potentials (EPSPs) in S neurones were larger during colitis, and the incidence of spontaneous fast EPSPs was increased. In control preparations, fast EPSPs were almost completely blocked by the nicotinic receptor antagonist hexamethonium, whereas fast EPSPs in inflamed S neurones were only partially inhibited by hexamethonium. In inflamed tissues, components of the fast EPSP in S neurones were sensitive to blockade of P2X and 5-HT3 receptors while these antagonists had little effect in control preparations. Control and inflamed S neurones were equally sensitive to brief application of acetylcholine, ATP and 5-HT, suggesting that synaptic facilitation was due to a presynaptic mechanism. Immunoreactivity for 5-HT in the submucosal plexus was unchanged by inflammation; this indicates that altered synaptic transmission was not due to anatomical remodelling of submucosal nerve terminals. This is the first demonstration of alterations in synaptic pharmacology in the enteric nervous system during inflammation. [source]


Spinal tumor necrosis factor , neutralization reduces peripheral inflammation and hyperalgesia and suppresses autonomic responses in experimental arthritis: A role for spinal tumor necrosis factor , during induction and maintenance of peripheral inflammation

ARTHRITIS & RHEUMATISM, Issue 5 2010
Michael Karl Boettger
Objective In addition to the sensitization of pain fibers in inflamed tissues, the increased excitability of the spinal cord is an important mechanism of inflammatory pain. Furthermore, spinal neuronal excitability has been suggested to play a role in modulating peripheral inflammation. This study was undertaken to test the hypothesis that spinal actions of the proinflammatory cytokine tumor necrosis factor , (TNF,) add significantly to both hyperalgesia and maintenance of peripheral inflammation. Methods Rats with antigen-induced arthritis (AIA) were treated intrathecally with the TNF,-neutralizing compound etanercept continuously during the complete time course of AIA, which was 3 days for the acute phase and 21 days for the chronic phase. During this time, inflammation and pain-related behavior were monitored. Since a role for autonomic control of inflammation was proposed, measures from heart rate time series were obtained in the acute phase. Findings were compared with those in vehicle-treated animals and in animals receiving etanercept intraperitoneally. Results Spinally administered etanercept acutely reduced pain-related behavior, attenuated both the development and the maintenance of inflammation, and was superior to systemic administration. Parameters indicating autonomic modulation showed a shift toward a sympathetically dominated state in vehicle-treated animals, which was prevented by intrathecal etanercept. Conclusion Our findings indicate that spinal TNF, plays an important role in both pain signaling and modulation of peripheral inflammation. Thus, neutralizing this cytokine at the spinal site not only represents a putative therapeutic option for different pain syndromes, but may be directly used to attenuate peripheral inflammation. [source]


Resolvin D1 attenuates activation of sensory transient receptor potential channels leading to multiple anti-nociception

BRITISH JOURNAL OF PHARMACOLOGY, Issue 3 2010
S Bang
BACKGROUND AND PURPOSE Temperature-sensitive transient receptor potential ion channels (thermoTRPs) expressed in primary sensory neurons and skin keratinocytes play a crucial role as peripheral pain detectors. Many natural and synthetic ligands have been found to act on thermoTRPs, but little is known about endogenous compounds that inhibit these TRPs. Here, we asked whether resolvin D1 (RvD1), a naturally occurring anti-inflammatory and pro-resolving lipid molecule is able to affect the TRP channel activation. EXPERIMENTAL APPROACH We examined the effect of RvD1 on the six thermoTRPs using Ca2+ imaging and whole cell electrophysiology experiments using the HEK cell heterologous expression system, cultured sensory neurons and HaCaT keratinocytes. We also checked changes in agonist-specific acute licking/flicking or flinching behaviours and TRP-related mechanical and thermal pain behaviours using Hargreaves, Randall-Selitto and von Frey assay systems with or without inflammation. KEY RESULTS RvD1 inhibited the activities of TRPA1, TRPV3 and TRPV4 at nanomolar and micromolar levels. Consistent attenuations in agonist-specific acute pain behaviours by immediate peripheral administration with RvD1 were also observed. Furthermore, local pretreatment with RvD1 significantly reversed mechanical and thermal hypersensitivity in inflamed tissues. CONCLUSIONS AND IMPLICATIONS RvD1 was a novel endogenous inhibitor for several sensory TRPs. The results of our behavioural studies suggest that RvD1 has an analgesic potential via these TRP-related mechanisms. [source]


Limited humoral immunoglobulin E memory influences serum immunoglobulin E levels in blood

CLINICAL & EXPERIMENTAL ALLERGY, Issue 9 2009
G. Achatz-Straussberger
Summary The switch of B cells expressing membrane-bound Igs, which serve as antigen receptors, to antibody-secreting plasmablasts and finally to non-dividing, long-lived plasma cells (PCs) lacking an antigen receptor, marks the terminal differentiation of a B cell. Antibody-secreting PCs represent the key cell type for the maintenance of a proactive humoral immunological memory. Although some populations of long-lived PCs persist in the spleen, most of them return to their ,place of birth' and travel to the bone marrow or invade inflamed tissues, where they survive up to several months in survival niches as resident, immobile cells. Existing data strongly support the notion that isotype-specific receptor signalling influences the migration behaviour of plasmablasts to the bone marrow. The recent observation in the murine sytem that the immigration of plasmablasts and the final differentiation to long-lived PCs in the bone marrow is dependent on the expressed B-cell isotype and the related expression of chemokine receptors leads to the conclusion that during a T-helper type 2 (Th2)-mediated immune response in wild type mice, IgE plasmablasts do not have the same chance to contribute to long-lived PC memory as IgG1 plasmablasts. The overall limited humoral IgE memory additionally restricts the quantity of IgE Igs in the serum. [source]


Tumour necrosis factor-alpha (TNF- ,) enhances lymphocyte migration into rheumatoid synovial tissue transplanted into severe combined immunodeficient (SCID) mice

CLINICAL & EXPERIMENTAL IMMUNOLOGY, Issue 1 2000
S. Wahid
Adhesion mechanisms play a major role in the recruitment of peripheral blood lymphocytes (PBL) which characteristically infiltrate rheumatoid arthritis (RA) synovium and other chronically inflamed tissues. Through a sequential series of complex integrated adhesion and signalling events, ,multistep model of migration', specific subsets of PBL are recruited into inflamed tissues. In this process both leucocyte receptors and microvascular endothelial (MVE) counter-receptors play a critical role. The MVE in particular, during an inflammatory state, is the target of various inflammatory mediators that cause the up-regulation of several cell adhesion molecules (CAM). One of the most important factors known to be a powerful inducer of MVE CAM is TNF- ,. Conversely, blocking TNF- , causes a down-modulation of CAM expression. To test directly the capacity of TNF- , to induce cell migration into RA synovium we adapted a model in which synovial grafts were implanted into SCID mice subcutaneously. Using this model we demonstrate that: (i) transplants remain viable and become vascularized and fed by mouse subdermal vessels; (ii) the mouse vasculature connects to the transplant vasculature which maintains the ability to express human CAM; (iii) intragraft injections of TNF- , up-regulate the expression of human CAM, following the down-regulation which occurred 4 weeks post-transplantation; and (iv) the up-regulation of graft CAM is associated with increased human PBL migration into the transplants. This study provides direct evidence in vivo of the capacity of TNF- , to induce cell migration. In addition, it provides the experimental background for the optimal use of this model. [source]