Inferior PV (inferior + pv)

Distribution by Scientific Domains

Kinds of Inferior PV

  • right inferior pv


  • Selected Abstracts


    Clinical Experience with a Single Catheter for Mapping and Ablation of Pulmonary Vein Ostium

    JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 4 2009
    PAOLO DE FILIPPO M.D.
    Introduction: The aim of this single center study is to evaluate the safety and the efficacy of performing pulmonary vein isolation (PVI) using a single high-density mesh ablator (HDMA) catheter. Methods: A total of 17 consecutive patients with paroxysmal (10 patients) or persistent atrial fibrillation (7 patients) and no heart disease were enrolled. A single transseptal puncture was performed and the HDMA was placed at each PV ostium identified with anatomic and electrophysiological mapping. Pulsed radiofrequency (RF) energy was delivered at the targeted temperature of 58°C with maximum power of 80 watts. No other ablation system was utilized. The primary objective of the study was acute isolation of the targeted PV, and the secondary objective was clinical efficacy and safety of PVI with HDMA for atrial fibrillation (AF) prevention. Patients were followed at intervals of 1, 3, 6, and 12 months. Results: PVI was attempted with HDMA in 67/67 PVs. [Correction made after online publication October 27, 2008: PVs changed from 6/67 to 67/67] Acute success rate were: 100% (16/16) for left superior PV, 100% (16/16) for left inferior PV, 100% (17/17) for right superior PV, 100% (1/1) for left common trunk and 47% (8/17) for right inferior PV. Total procedure time was 200 ± 36 minutes (range 130,240 minutes) and total fluoroscopy time was 42 ± 18 minutes (range 23,75 minutes). During a mean follow-up of 11 ± 4 months, 64% of patients remained in sinus rhythm (8/10 paroxysmal AF and 3/7 for persistent AF). No complications occurred either acutely or at follow-up. Conclusions: PV isolation with HDMA is feasible and safe. The midterm efficacy in maintaining sinus rhythm is higher in paroxysmal than in persistent patients. [source]


    Safe and Effective Ablation of Atrial Fibrillation: Importance of Esophageal Temperature Monitoring to Avoid Periesophageal Nerve Injury as a Complication of Pulmonary Vein Isolation

    JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 1 2009
    TAISHI KUWAHARA M.D.
    Introduction: Catheter ablation on the left atrial posterior wall has been reported to potentially damage the esophagus or periesophageal vagal nerve. The aim of this study was to evaluate the efficacy of esophageal temperature monitoring (ETM) in preventing esophageal or periesophageal vagal nerve injury in patients with atrial fibrillation (AF) undergoing pulmonary vein (PV) isolation. Methods: This study included 359 patients with drug-refractory AF who underwent extensive PV isolation. The first 152 patients were treated without ETM (non-ETM) and the last 207 with ETM. In the ETM group, the esophageal temperature (ET) was measured with a deflectable temperature probe that was placed close to the ablation electrode, and the radiofrequency energy applications were stopped when the ET reached 42°C. Results: In all patients in the ETM group, the ET increased to 42°C in at least one site by 28 ± 14 seconds, mostly along the right side of the left PVs, especially near the left inferior PV. Less energy (6.3 ± 1.9 × 104 J) was required for PV isolation in the ETM group than that in the non-ETM (6.8 ± 1.9 ×104 J, P = 0.03). Gastric hypomotility owing to periesophageal nerve damage was observed in three patients in the non-ETM group, but in none in the ETM (P = 0.02). The recurrence rates of AF did not differ between the two groups (non-ETM, 29%; ETM, 27%). Conclusion: Titration of the duration of the ablation energy delivery while monitoring the ET could prevent periesophageal nerve injury due to the AF ablation, without decreasing the success rate of maintaining sinus rhythm. [source]


    Maintenance of Atrial Fibrillation by Pulmonary Vein Tachycardia with Ostial Conduction Block: Evidence of an Interpulmonary Vein Electrical Connection

    JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 10 2008
    SEIICHIRO MATSUO M.D.
    We report a case of a 56-year-old man with paroxysmal atrial fibrillation who underwent segmental, ostial pulmonary vein (PV) isolation while in arrhythmia. During isolation of the left superior PV (LSPV), organized electrical activity was seen within the vein, suggestive of a PV tachycardia with a cycle length of 90 ms. Simultaneously, organized electrical activity with a cycle length of 180 ms was seen in the left inferior PV (LIPV), suggestive of 2:1 conduction between the LSPV and the LIPV. Isolation of the LIPV resulted in conversion to sinus rhythm, while confirming isolation of the LSPV by the presence of ongoing PV tachycardia in this vein. This case demonstrates a direct electrical connection between the ipsilateral left PVs, leading to maintenance of atrial fibrillation. [source]


    Electrical Connection Between Left Superior and Inferior Pulmonary Veins in a Patient with Paroxysmal Atrial Fibrillation

    JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 5 2002
    YOSHIHIDE TAKAHASHI M.D.
    Electrical Connection Between Pulmonary Veins. We report the case of a patient with paroxysmal atrial fibrillation, who underwent pulmonary vein (PV) electrical isolation from the left atrium (LA). Prior to achieving isolation of the left superior PV (LSPV) from the LA, earlier PV potentials were recorded inside the left inferior PV (LIPV) than LA activity during pacing at the distal LSPV. The LSPV finally was isolated by radiofrequency applications at the ostium of the LIPV. The patient had electrical connection between the LSPV and LIPV, and required radiofrequency ablation of the breakthroughs from the LA to LIPV for complete isolation of the LSPV. [source]


    Focal Atrial Fibrillation: Experimental Evidence for a Pathophysiologic Role of the Autonomic Nervous System

    JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 5 2001
    PATRICK SCHAUERTE M.D.
    Focal AF and Autonomic Nerves.Introduction: Focal paroxysmal atrial fibrillation (AF) was shown recently to originate in the pulmonary veins (PVs) and superior vena cava (SVC). In the present study, we describe an animal model in which local high-frequency electrical stimulation produces focal atrial activation and AF/AT (atrial tachycardia) with electrogram characteristics consistent with clinical reports. Methods and Results: In 21 mongrel dogs, local high-frequency electrical stimulation was performed by delivering trains of electrical stimuli (200 Hz, impulse duration 0.1 msec) to the PVs/SVC during atrial refractoriness. Atrial premature depolarizations (APDs), AT, and AF occurred with increasing highfrequency electrical stimulation voltage. APD/AT/AF originated adjacent to the site of high-frequency electrical stimulation and were inducible in 12 of 12 dogs in the SVC and in 8 of 9 dogs in the left superior PV (left inferior PV: 7/8, right superior PV: 6/8; right inferior PV: 4/8). In the PVs, APDs occurred at 13 ± 8 V and AT/AF at 15 ± 9 V (P < 0.01; n = 25). In the SVC, APDs were elicited at 19 ± 6 V and AT/AF at 26 ± 6 V (P < 0.01; n = 12). High-frequency electrical stimulation led to local refractory period shortening in the PVs. The response to high-frequency electrical stimulation was blunted or prevented after beta-receptor blockade and abolished by atropine. In vitro, high-frequency electrical stimulation induced a heterogeneous response, with shortening of the action potential in some cells (from 89 ± 35 msec to 60 ± 22 msec; P < 0.001; n = 7) but lengthening of the action potential and development of early afterdepolarizations that triggered APD/AT in other cells. Action potential shortening was abolished by atropine. Conclusion: High-frequency electrical stimulation evokes rapid ectopic beats from the PV/SVC, which show variable degrees of conduction block to the atria and induce AF, resembling findings in patients with focal idiopathic paroxysmal AF. The occurrence of the arrhythmia in this animal model was likely due to alterations in local autonomic tone by high-frequency electrical stimulation. Further research is needed to prove absolutely that the observed effects of high-frequency electrical stimulation were caused by autonomic nerve stimulation. [source]


    Pulmonary Vein Internal Electrical Activity Does Not Contribute to the Maintenance of Atrial Fibrillation

    PACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 6 2003
    GJIN NDREPEPA
    Whether the electrical activity generated in the pulmonary veins (PVs) during atrial fibrillation (AF) contributes to the maintenance of arrhythmia is not known. The study population consisted of 22 patients (mean age 58 ± 9.5 years, 16 men) with persistent (12 patients) or intermittent (10 patients) AF. Mapping of the left atrium (LA) was performed with a 64-electrode basket catheter. PVs were mapped simultaneously with the LA with a quadripolar catheter. PV were defined as arrhythmogenic (if frequent ectopic activity induced AF) or nonarrhythmogenic (if no ectopic activity was observed during the procedure). AF cycle lengths in arrhythmogenic and nonarrhythmogenic PV were 130 ± 50 ms and 152 ± 42 ms, respectively(P < 0.001). Both were significantly longer than simultaneous AF activity recorded from the posterior wall of the LA(116 ± 49 ms, P < 0.001). AF cycle lengths in arrhythmogenic PVs as compared to nonarrhythmogenic PVs were: right superior PV 125 ± 49 ms versus 148 ± 51 ms ; left superior PV 140 ± 52 ms versus 161 ± 30 ms ; left inferior PV 127 ± 48 ms versus 147 ± 45 ms ; and right inferior PV 129 ± 38 versus 152 ± 44 ms (P < 0.001for all four comparisons). AF activity in the PV was more organized than in the posterior wall of the LA and the veins were activated in a proximal-to-distal direction during sustained AF episodes. In patients with AF not related to rheumatic heart disease, the posterior wall of the LA has faster activity than the PVs. The AF activity generated inside the PV during sustained AF episodes originates from the posterior wall of the LA rather than from focal firing. (PACE 2003; 26:1356,1362) [source]


    Myocardium Extending from the Left Atrium onto the Pulmonary Veins: A Comparison Between Subjects with and Without Atrial Fibrillation

    PACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 10 2001
    MINORU TAGAWA
    TAGAWA, M., et al.: Myocardium Extending from the Left Atrium onto the Pulmonary Veins: A Comparison Between Subjects with and Without Atrial Fibrillation. Rapid discharges from the myocardium extending from the left atrium onto the pulmonary vein (PV) have been shown to initiate AF, and AF may be eradicated by the catheter ablation within the PV. However, if there is any difference in the distribution patterns of the myocardial sleeve onto the PV between the subjects with and without AF is to be determined. Twenty-one autopsied hearts were examined. Eleven patients previously had AF before death and another 10 patients had normal sinus rhythm as confirmed from the medical records including ECGs before death. After exposing the heart, the distance to the peripheral end of the myocardium was measured from the PV-atrial junction in each PV. Then, the PVs were sectioned and stained and the distal end of myocardium and the distribution pattern were studied. The anteroposterior diameter of the left atrium was also measured. In 74 of 84 PVs, the myocardium extended beyond the PV-atrial junction. The myocardium was localized surrounding the vascular smooth muscle layer forming a myocardial sleeve. The peripheral end of the myocardial sleeve was irregular and the maximal and minimal distances were measured in each PV. The myocardium extended most distally in the superior PVs compared to the inferior ones and the maximal distance to the peripheral end was similar between the AF and non-AF subjects (8.4 ± 2.8 vs 8.7 ± 4.4 mm for the left superior and 6.5 ± 3.5 vs 5.1 ± 3.9 mm for the right superior PV, respectively). A significant difference was found in the maximal distance in the inferior PVs: 7.3 ± 4.6 vs 3.3 ± 2.8 mm for the left (P < 0.05) and 5.7 ± 2.4 vs 1.7 ± 1.9 mm for the right inferior PV (P < 0.001) in the subjects with and without AF, respectively. The diameter of left atrium was slightly dilated in AF patients but insignificantly (4.1 ± 0.1 vs 3.6 ± 0.1 cm, P > 0.07). The myocytes on the PV were less uniform and surrounded by more fibrosis in patients with AF compared to those without AF. In conclusion, the myocardium extended beyond the atrium-vein junction onto the PVs. The distribution patterns of the myocardium was almost similar between subjects with and without AF, but the histology suggested variable myocytes in size and fibrosis in patients with AF. [source]