Home About us Contact | |||
Inferior Colliculus (inferior + colliculu)
Selected AbstractsSeasonal changes in frequency tuning and temporal processing in single neurons in the frog auditory midbrainDEVELOPMENTAL NEUROBIOLOGY, Issue 1 2005Jozien BM Goense Abstract Frogs rely on acoustic signaling to detect, discriminate, and localize mates. In the temperate zone, reproduction occurs in the spring, when frogs emerge from hibernation and engage in acoustically guided behaviors. In response to the species mating call, males typically show evoked vocal responses or other territorial behaviors, and females show phonotactic responses. Because of their strong seasonal behavior, it is possible that the frog auditory system also displays seasonal variation, as evidenced in their vocal control system. This hypothesis was tested in male Northern leopard frogs by evaluating the response characteristics of single neurons in the torus semicircularis (TS; a homolog of the inferior colliculus) to a synthetic mating call at different times of the year. We found that TS neurons displayed a seasonal change in frequency tuning and temporal properties. Frequency tuning shifted from a predominance of TS units sensitive to intermediate frequencies (700,1200 Hz) in the winter, to low frequencies (100,600 Hz) in the summer. In winter and early spring, most TS neurons showed poor, or weak, time locking to the envelope of the amplitude-modulated synthetic call, whereas in late spring and early summer the majority of TS neurons showed robust time-locked responses. These seasonal differences indicate that neural coding by auditory midbrain neurons in the Northern leopard frog is subject to seasonal fluctuation. © 2005 Wiley Periodicals, Inc. J. Neurobiol, 2005 [source] Eyeblink conditioning using cochlear nucleus stimulation as a conditioned stimulus in developing ratsDEVELOPMENTAL PSYCHOBIOLOGY, Issue 7 2008John H. Freeman Abstract Previous studies demonstrated that the development of auditory conditioned stimulus (CS) input to the cerebellum may be a neural mechanism underlying the ontogenetic emergence of eyeblink conditioning in rats. The current study investigated the role of developmental changes in the projections of the cochlear nucleus (CN) in the ontogeny of eyeblink conditioning using electrical stimulation of the CN as a CS. Rat pups were implanted with a bipolar stimulating electrode in the CN and given six 100-trial training sessions with a 300 ms stimulation train in the CN paired with a 10 ms periorbital shock unconditioned stimulus (US) on postnatal days (P) 17,18 or 24,25. Control groups were given unpaired presentations of the CS and US. Rats in both age groups that received paired training showed significant increases in eyeblink conditioned responses across training relative to the unpaired groups. The rats trained on P24,25, however, showed stronger conditioning relative to the group trained on P17,18. Rats with missed electrodes in the inferior cerebellar peduncle or in the cerebellar cortex did not show conditioning. The findings suggest that developmental changes in the CN projections to the pons, inferior colliculus, or medial auditory thalamus may be a neural mechanism underlying the ontogeny of auditory eyeblink conditioning. © 2008 Wiley Periodicals, Inc. Dev Psychobiol 50: 640-646, 2008. [source] Morphologic and Neurochemical Abnormalities in the Auditory Brainstem of the Genetically Epilepsy-prone Hamster (GPG/Vall)EPILEPSIA, Issue 7 2005Verónica Fuentes-Santamaría Summary:,Purpose: This study was performed to evaluate whether audiogenic seizures, in a strain of genetically epilepsy-prone hamsters (GPG/Vall), might be associated with morphologic alterations in the cochlea and auditory brainstem. In addition, we used parvalbumin as a marker of neurons with high levels of activity to examine changes within neurons. Methods: Cochlear histology as well as parvalbumin immunohistochemistry were performed to assess possible abnormalities in the GPG/Vall hamster. Densitometry also was used to quantify levels of parvalbumin immunostaining within neurons and fibers in auditory nuclei. Results: In the present study, missing outer hair cells and spiral ganglion cells were observed in the GPG/Vall hamster. In addition, an increase was noted in the size of spiral ganglion cells as well as a decrease in the volume and cell size of the cochlear nucleus (CN), the superior olivary complex nuclei (SOC), and the nuclei of the lateral lemniscus (LL) and the inferior colliculus (IC). These alterations were accompanied by an increase in levels of parvalbumin immunostaining within CN, SOC, and LL neurons, as well as within parvalbumin-immunostained fibers in the CN and IC. Conclusions: These data are consistent with a cascade of atrophic changes starting in the cochlea and extending along the auditory brainstem in an animal model of inherited epilepsy. Our data also show an upregulation in parvalbumin immunostaining in the neuropil of the IC that may reflect a protective mechanism to prevent cell death in the afferent sources to this nucleus. [source] Neural correlates of binaural masking level difference in the inferior colliculus of the barn owl (Tyto alba)EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2010Ali Asadollahi Abstract Humans and animals are able to detect signals in noisy environments. Detection improves when the noise and the signal have different interaural phase relationships. The resulting improvement in detection threshold is called the binaural masking level difference. We investigated neural mechanisms underlying the release from masking in the inferior colliculus of barn owls in low-frequency and high-frequency neurons. A tone (signal) was presented either with the same interaural time difference as the noise (masker) or at a 180° phase shift as compared with the interaural time difference of the noise. The changes in firing rates induced by the addition of a signal of increasing level while masker level was kept constant was well predicted by the relative responses to the masker and signal alone. In many cases, the response at the highest signal levels was dominated by the response to the signal alone, in spite of a significant response to the masker at low signal levels, suggesting the presence of occlusion. Detection thresholds and binaural masking level differences were widely distributed. The amount of release from masking increased with increasing masker level. Narrowly tuned neurons in the central nucleus of the inferior colliculus had detection thresholds that were lower than or similar to those of broadly tuned neurons in the external nucleus of the inferior colliculus. Broadly tuned neurons exhibited higher masking level differences than narrowband neurons. These data suggest that detection has different spectral requirements from localization. [source] Estrogen-dependent selectivity of genomic responses to birdsongEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2006Donna L. Maney Abstract Behavioral responses to sociosexual signals often depend on gonadal steroid hormones, which are thought to modulate behavior by acting on motivational systems in the brain. There is mounting evidence that sex steroids may also modulate perception of sociosexual signals by affecting sensory processing. In seasonally breeding songbirds such as the white-throated sparrow (Zonotrichia albicollis), the female's behavioral response to hearing male song depends on her plasma levels of estradiol (E2). Here, we examined whether plasma E2 also affects the selectivity of the song-induced zenk (egr-1) response in the auditory forebrain, which is known to vary according to the behavioral relevance of song stimuli. Non-breeding females were held on a winter-like photoperiod and implanted with silastic capsules containing either no hormone or E2. E2-treated birds hearing 42 min of conspecific song had more cells immunoreactive for the protein product of zenk in the auditory forebrain than did those hearing frequency-matched synthetic tones. In birds not treated with E2, however, the zenk response to song did not differ from that to tones. We found similar effects in the avian homolog of the inferior colliculus, indicating that E2 may affect the processing of auditory information upstream of the forebrain. Our data suggest that in females, zenk induction in the auditory system is selective for song only when plasma E2 exceeds non-breeding levels. E2-dependent plasticity of auditory pathways and processing centres may promote recognition of and attention to conspecific song during the breeding season. [source] Novelty detector neurons in the mammalian auditory midbrainEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2005David Pérez-González Abstract Novel stimuli in all sensory modalities are highly effective in attracting and focusing attention. Stimulus-specific adaptation (SSA) and brain activity evoked by novel stimuli have been studied using population measures such as imaging and event-related potentials, but there have been few studies at the single-neuron level. In this study we compare SSA across different populations of neurons in the inferior colliculus (IC) of the rat and show that a subclass of neurons with rapid and pronounced SSA respond selectively to novel sounds. These neurons, located in the dorsal and external cortex of the IC, fail to respond to multiple repetitions of a sound but briefly recover their excitability when some stimulus parameter is changed. The finding of neurons that respond selectively to novel stimuli in the mammalian auditory midbrain suggests that they may contribute to a rapid subcortical pathway for directing attention and/or orienting responses to novel sounds. [source] Hierarchical processing of sound location and motion in the human brainstem and planum temporaleEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2005Katrin Krumbholz Abstract Horizontal sound localization relies on the extraction of binaural acoustic cues by integration of the signals from the two ears at the level of the brainstem. The present experiment was aimed at detecting the sites of binaural integration in the human brainstem using functional magnetic resonance imaging and a binaural difference paradigm, in which the responses to binaural sounds were compared with the sum of the responses to the corresponding monaural sounds. The experiment also included a moving sound condition, which was contrasted against a spectrally and energetically matched stationary sound condition to assess which of the structures that are involved in general binaural processing are specifically specialized in motion processing. The binaural difference contrast revealed a substantial binaural response suppression in the inferior colliculus in the midbrain, the medial geniculate body in the thalamus and the primary auditory cortex. The effect appears to reflect an actual reduction of the underlying activity, probably brought about by binaural inhibition or refractoriness at the level of the superior olivary complex. Whereas all structures up to and including the primary auditory cortex were activated as strongly by the stationary as by the moving sounds, non-primary auditory fields in the planum temporale responded selectively to the moving sounds. These results suggest a hierarchical organization of auditory spatial processing in which the general analysis of binaural information begins as early as the brainstem, while the representation of dynamic binaural cues relies on non-primary auditory fields in the planum temporale. [source] Mapping responses to frequency sweeps and tones in the inferior colliculus of house miceEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2003Steffen R. Hage Abstract In auditory maps of the primary auditory cortex, neural response properties are arranged in a systematic way over the cortical surface. As in the visual system, such maps may play a critical role in the representation of sounds for perception and cognition. By recording from single neurons in the central nucleus of the inferior colliculus (ICC) of the mouse, we present the first evidence for spatial organizations of parameters of frequency sweeps (sweep speed, upward/downward sweep direction) and of whole-field tone response patterns together with a map of frequency tuning curve shape. The maps of sweep speed, tone response patterns and tuning curve shape are concentrically arranged on frequency band laminae of the ICC with the representation of slow speeds, build up response types and sharp tuning mainly in the centre of a lamina, and all (including high) speeds, phasic response types and broad tuning mainly in the periphery. Representation of sweep direction shows preferences for upward sweeps medially and laterally and downward sweeps mainly centrally in the ICC (either striped or concentric map). These maps are compatible with the idea of a gradient of decreasing inhibition from the centre to the periphery of the ICC and by gradients of intrinsic neuronal properties (onset or sustained responding). The maps in the inferior colliculus compare favourably with corresponding maps in the primary auditory cortex, and we show how the maps of sweep speed and direction selectivity of the primary auditory cortex could be derived from the here-found maps of the inferior colliculus. [source] Aberrant responses to acoustic stimuli in mice deficient for neural recognition molecule NB-2EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2003Hong Li Abstract NB-2, a member of the contactin subgroup in the immunoglobulin superfamily, is expressed specifically in the postnatal nervous system, reaching a maximum level at 3 weeks postnatal. NB-2 displays neurite outgrowth-promoting activity in vitro. To assess its function in the nervous system, we generated mutant mice in which a part of the NB-2 gene was ablated and replaced with the tau-LacZ gene. The general appearance of NB-2-deficient mice and their gross anatomical features were normal. The LacZ expression patterns in heterozygous mice revealed that NB-2 is preferentially expressed in the central auditory pathways. In the audiogenic seizure test, NB-2-deficient mice exhibited a lower incidence of wild running, but a higher mortality rate than the wild-type littermates. c-Fos immunohistochemistry demonstrated that neural excitability induced by the audiogenic seizure test in the NB-2-deficient mice was prominently attenuated in both the dorsal and external cortices of the inferior colliculus, where enhanced neural excitability was observed in the wild-type mice. In response to pure-tone stimulation after priming, NB-2-deficient mice exhibited a diffuse and low level of c-Fos expression in the central nucleus of the inferior colliculus, which was distinctly different from the band-like c-Fos expression corresponding to the tonotopic map in the wild-type littermates. Taken together, these results suggest that a lack of NB-2 causes impairment of the neuronal activity in the auditory system. [source] Auditory activation of ,visual' cortical areas in the blind mole rat (Spalax ehrenbergi)EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2002Gilles Bronchti Abstract The mole rat (Spalax ehrenbergi) is a subterranean rodent whose adaptations to its fossorial life include an extremely reduced peripheral visual system and an auditory system suited for the perception of vibratory stimuli. We have previously shown that in this blind rodent the dorsal lateral geniculate nucleus, the primary visual thalamic nucleus of sighted mammals, is activated by auditory stimuli. In this report we focus on the manifestation of this cross-modal compensation at the cortical level. Cyto- and myeloarchitectural analyses of the occipital area showed that despite the almost total blindness of the mole rat this area has retained the organization of a typical mammalian primary visual cortex. Application of the metabolic marker 2-deoxyglucose and electrophysiological recording of evoked field potentials and single-unit activity disclosed that a considerable part of this area is activated by auditory stimuli. Previous neuronal tracing studies had revealed the origin of the bulk of this auditory input to be the dorsal lateral geniculate nucleus which itself receives auditory input from the inferior colliculus. [source] Topographical projection from the superior colliculus to the nucleus of the brachium of the inferior colliculus in the ferret: convergence of visual and auditory informationEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2000Timothy P. Doubell Abstract The normal maturation of the auditory space map in the deeper layers of the ferret superior colliculus (SC) depends on signals provided by the superficial visual layers, but it is unknown where or how these signals influence the developing auditory responses. Here we report that tracer injections in the superficial layers label axons with en passant and terminal boutons, both in the deeper layers of the SC and in their primary source of auditory input, the nucleus of the brachium of the inferior colliculus (nBIC). Electron microscopy confirmed that biocytin-labelled SC axons form axodendritic synapses on nBIC neurons. Injections of biotinylated dextran amine in the nBIC resulted in anterograde labelling in the deeper layers of the SC, as well as retrogradely labelled superficial and deep SC neurons, whose distribution varied systematically with the rostrocaudal placement of the injection sites in the nBIC. Topographical order in the projection from the SC to the ipsilateral nBIC was confirmed using fluorescent microspheres. We demonstrated the existence of functional SC-nBIC connections by making whole-cell current-clamp recordings from young ferret slices. Both monosynaptic and polysynaptic EPSPs were generated by electrical stimulation of either the superficial or deep SC layers. In addition to unimodal auditory units, both visual and bimodal visual,auditory units were recorded in the nBIC in vivo and their incidence was higher in juvenile ferrets than in adults. The SC-nBIC circuit provides a potential means by which visual and other sensory or premotor signals may be delivered to the nBIC to calibrate the representation of auditory space. [source] The superior colliculus of the camel: a neuronal-specific nuclear protein (NeuN) and neuropeptide studyJOURNAL OF ANATOMY, Issue 2 2006E. P. K. Mensah-Brown Abstract In this study we examined the superior colliculus of the midbrain of the one-humped (dromedary) camel, Camelus dromedarius, using Nissl staining and anti-neuronal-specific nuclear protein (NeuN) immunohistochemistry for total neuronal population as well as for the enkephalins, somatostatin (SOM) and substance P (SP). It was found that, unlike in most mammals, the superior colliculus is much larger than the inferior colliculus. The superior colliculus is concerned with visual reflexes and the co-ordination of head, neck and eye movements, which are certainly of importance to this animal with large eyes, head and neck, and apparently good vision. The basic neuronal architecture and lamination of the superior colliculus are similar to that in other mammals. However, we describe for the first time an unusually large content of neurons in the superior colliculus with strong immunoreactivity for met-enkephalin, an endogenous opioid. We classified the majority of these neurons as small (perimeters of 40,50 µm), and localized diffusely throughout the superficial grey and stratum opticum. In addition, large pyramidal-like neurons with perimeters of 100 µm and above were present in the intermediate grey layer. Large unipolar cells were located immediately dorsal to the deep grey layer. By contrast, small neurons (perimeters of 40,50 µm) immunopositive to SOM and SP were located exclusively in the superficial grey layer. We propose that this system may be associated with a pain-inhibiting pathway that has been described from the periaqueductal grey matter, juxtaposing the deep layers of the superior colliculus, to the lower brainstem and spinal cord. Such pain inhibition could be important in relation to the camel's life in the harsh environment of its native deserts, often living in very high temperatures with no shade and a diet consisting largely of thorny branches. [source] Mild carbon monoxide exposure impairs the developing auditory system of the ratJOURNAL OF NEUROSCIENCE RESEARCH, Issue 5 2003Douglas S. Webber Abstract The object of this study was to determine if chronic exposure to mild concentrations of CO in air caused changes in the integrity of the inferior colliculus during the most active period of synaptogenesis/auditory development. We examined all subregions of the inferior colliculus (IC) of rats by immunocytochemical approaches after pups were exposed chronically to CO concentrations of, 0, 12.5, 25, and 50 ppm in air starting at Day 8 through 20,22 days of age. Mother-reared pups were compared to the gastrostomy-reared pups with or without CO exposure for basal neural activity, using c-Fos immunoreactivity as a marker. Half the rats were examined at 27 days of age, 5 days after the end of CO exposure, and the other half were examined 50 days later at 75,77 days of age. In the central nucleus of the IC, the number of cells expressing a basal level of c-Fos was decreased significantly in the CO-exposed animals when compared to controls; however, there was little or no difference in the number of cells expressing c-Fos in the other subregions of the IC. We conclude that the central nucleus of the inferior colliculus is affected selectively by mild CO exposure (0.0012% in air) and that this reduction in neuronal activity persists into adulthood. © 2003 Wiley-Liss, Inc. [source] Manganese-enhanced MRI of the mouse auditory pathwayMAGNETIC RESONANCE IN MEDICINE, Issue 1 2008Takashi Watanabe Abstract Functional mapping of the lateral lemniscus and the superior olivary complex as part of the auditory pathway was accomplished for the first time in mice in vivo using manganese-enhanced MRI (2.35T, 3D FLASH, 117 ,m isotropic resolution). These and other auditory centers in the brainstem presented with pronounced signal enhancements after systemic administration of manganese chloride when animals were exposed to acoustic stimuli for 48 hr, but not when kept in a quiet environment. The results indicate an activation-dependent accumulation of manganese in the neural circuit composed of the cochlear nucleus, the superior olivary complex, the lateral lemniscus, and the inferior colliculus. The marked enhancement of the lateral lemniscus suggests that the stimulus-related accumulation of manganese reflects not only a regional uptake from extracellular fluid but also a concurrent delivery by axonal transport within the auditory system. Magn Reson Med 60:210,212, 2008. © 2008 Wiley-Liss, Inc. [source] Involvement of the auditory brainstem system in spinocerebellar ataxia type 2 (SCA2), type 3 (SCA3) and type 7 (SCA7)NEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 5 2008F. Hoche Aims: The spinocerebellar ataxia type 2 (SCA2), type 3 (SCA3) and type 7 (SCA7) are clinically characterized by progressive and severe ataxic symptoms, dysarthria, dysphagia, oculomotor impairments, pyramidal and extrapyramidal manifestations and sensory deficits. Although recent clinical studies reported additional disease signs suggesting involvement of the brainstem auditory system, this has never been studied in detail in SCA2, SCA3 or SCA7. Methods: We performed a detailed pathoanatomical investigation of unconventionally thick tissue sections through the auditory brainstem nuclei (that is, nucleus of the inferior colliculus, nuclei of the lateral lemniscus, superior olive, cochlear nuclei) and auditory brainstem fibre tracts (that is, lateral lemniscus, trapezoid body, dorsal acoustic stria, cochlear portion of the vestibulocochlear nerve) of clinically diagnosed and genetically confirmed SCA2, SCA3 and SCA7 patients. Results: Examination of unconventionally thick serial brainstem sections stained for lipofuscin pigment and Nissl material revealed a consistent and widespread involvement of the auditory brainstem nuclei in the SCA2, SCA3 and SCA7 patients studied. Serial brainstem tissue sections stained for myelin showed loss of myelinated fibres in two of the auditory brainstem fibre tracts (that is, lateral lemniscus, trapezoid body) in a subset of patients. Conclusions: The involvement of the auditory brainstem system offers plausible explanations for the auditory impairments detected in some of our and other SCA2, SCA3 and SCA7 patients upon bedside examination or neurophysiological investigation. However, further clinical studies are required to resolve the striking discrepancy between the consistent involvement of the brainstem auditory system observed in this study and the comparatively low frequency of reported auditory impairments in SCA2, SCA3 and SCA7 patients. [source] Neuroanatomy of the Subadult and Fetal Brain of the Atlantic White-sided Dolphin (Lagenorhynchus acutus) from in Situ Magnetic Resonance ImagesTHE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 12 2007Eric W. Montie Abstract This article provides the first anatomically labeled, magnetic resonance imaging (MRI) -based atlas of the subadult and fetal Atlantic white-sided dolphin (Lagenorhynchus acutus) brain. It differs from previous MRI-based atlases of cetaceans in that it was created from images of fresh, postmortem brains in situ rather than extracted, formalin-fixed brains. The in situ images displayed the classic hallmarks of odontocete brains: fore-shortened orbital lobes and pronounced temporal width. Olfactory structures were absent and auditory regions (e.g., temporal lobes and inferior colliculi) were enlarged. In the subadult and fetal postmortem MRI scans, the hippocampus was identifiable, despite the relatively small size of this structure in cetaceans. The white matter tracts of the fetal hindbrain and cerebellum were pronounced, but in the telencephalon, the white matter tracts were much less distinct, consistent with less myelin. The white matter tracts of the auditory pathways in the fetal brains were myelinated, as shown by the T2 hypointensity signals for the inferior colliculus, cochlear nuclei, and trapezoid bodies. This finding is consistent with hearing and auditory processing regions maturing in utero in L. acutus, as has been observed for most mammals. In situ MRI scanning of fresh, postmortem specimens can be used not only to study the evolution and developmental patterns of cetacean brains but also to investigate the impacts of natural toxins (such as domoic acid), anthropogenic chemicals (such as polychlorinated biphenyls, polybrominated diphenyl ethers, and their hydroxylated metabolites), biological agents (parasites), and noise on the central nervous system of marine mammal species. Anat Rec, 2007. © 2007 Wiley-Liss, Inc. [source] Long-term regulation in calretinin staining in the rat inferior colliculus after unilateral auditory cortical ablationTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 20 2010Cheryl Clarkson Abstract In this study we analyzed the effects in the inferior colliculus of a unilateral ablation of the auditory cortex in rats. Variations in both calretinin immunoreactivity and protein levels determined by Western blot suggest that such lesions induce changes in the regulation of this calcium-binding protein. Stereological counts of calretinin-immunoreactive neurons in the inferior colliculus 15, 90, and 180 days after the lesion showed a progressive increase in the number of immunoreactive neurons, with a parallel increase in the intensity of staining. Two hundred forty days after the cortical lesion, both the number of immunoreactive neurons and the staining intensity had returned to control values. The effects of the cortical lesion on calretinin regulation are more intense in those inferior colliculus subdivisions more densely innervated by the corticocollicular projection. This finding, along with the time course of calretinin regulation suggests that degeneration of the descending projection is linked to calretinin regulation in the inferior colliculus. We hypothesize, based on the role of calretinin, that the observed increase in immunoreactivity levels seen in the inferior colliculus after lesioning of the auditory cortex may be related to altered excitability in deafferented neurons. Our finding, may reflect adaptive mechanisms to changes in calcium influx and excitability in inferior colliculus neurons induced by lesions of the descending projection from the cortex to the inferior colliculus. J. Comp. Neurol. 518:4261,4276, 2010. © 2010 Wiley-Liss, Inc. [source] Connections of functional areas in the mustached bat's auditory cortex with the auditory thalamusTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 2 2007James M. Pearson Abstract The auditory thalamus is the major target of the inferior colliculus and connects in turn with the auditory cortex. In the mustached bat, biosonar information is represented according to frequency in the central nucleus of the inferior colliculus (ICc) but according to response type in the cortex. In addition, the cortex has multiple areas with neurons of similar response type compared to the single tonotopic representation in the ICc. To investigate whether these transformations occur at the level of the thalamus, we injected anatomical tracers into physiologically defined locations in the mustached bat's auditory cortex. Injections in areas used for target ranging labeled contiguous regions of the auditory thalamus rather than separate patches corresponding to regions that respond to the different harmonic frequencies used for ranging. Injections in the two largest ranging areas produced labeling in separate locations. These results indicate that the thalamus is organized according to response type rather than frequency and that multiple mappings of response types exist. Injections in areas used for target detection labeled thalamic regions that were largely separate from those that interconnect with ranging areas. However, injections in an area used for determining target velocity overlapped with the areas connected to ranging areas and areas involved in target detection. Thus, separation by functional type and multiplication of areas with similar response type occurs by the thalamic level, but connections with the cortex segregate the functional types more completely than occurs in the thalamus. J. Comp. Neurol. 500:401,418, 2007. © 2006 Wiley-Liss, Inc. [source] Colocalization of GABA and glycine in the ventral nucleus of the lateral lemniscus in rat: An in situ hybridization and semiquantitative immunocytochemical studyTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 4 2001Raquel Riquelme Abstract We have studied by in situ hybridization for GAD65 mRNA in thick sections and by semiquantitative postembedding immunocytochemistry in consecutive semithin sections, the expression of ,-aminobutyric acid (GABA) and glycine in cell bodies and axosomatic puncta of the rat ventral nucleus of the lateral lemniscus (VNLL), a prominent monaural brainstem auditory structure. The in situ hybridization and the densitometric analysis of the immunostaining suggest that the rat VNLL contains two main populations of neurons. Approximately one-third of neurons are unstained with either technique and are presumably excitatory; their cell bodies are enveloped by a large number of glycine-immunoreactive puncta. Most if not all of the remaining two-thirds colocalize GABA and glycine and are assumed to be inhibitory. These two populations show a complementary distribution within the VNLL, with inhibitory neurons located mainly ventrally and excitatory neurons dorsally. In scatterplots of gray values measured from cell bodies, the double-labeled cells appear to form a single cluster in terms of their staining intensities for the two transmitter candidates. However, this cluster may have to be further subdivided because cells with extreme GABA/glycine ratios differ from those with average ratios with respect to location or size. The VNLL seems unique among auditory structures by its large number of neurons that colocalize GABA and glycine. Although the functional significance of this colocalization remains unknown, our results suggest that the VNLL exerts convergent excitatory and inhibitory influences over the inferior colliculus, which may underlie the timing processing in the auditory midbrain. J. Comp. Neurol. 432:409,424, 2001. © 2001 Wiley-Liss, Inc. [source] Expression and molecular diversity of Tcf7l2 in the developing murine cerebellum and brainJOURNAL OF NEUROSCIENCE RESEARCH, Issue 7 2009Tommy A. Nazwar Abstract The Wingless family of secreted proteins impinges on multiple aspects of vertebrate nervous system development, from early global patterning and cell fate decision to synaptogenesis. Here, we mapped the developmental expression of the Tcf7l2, which is key to the canonical Wingless signaling cascade, in the developing cerebellum. The exclusive and transient expression of Tcf7l2 in ventricular and Olig2-defined precursor cells within the cerebellar anlage, and its predominant expression in postmitotic neurons in the midbrain/inferior colliculus allowed us to ask whether cell type,specific differences are also reflected in splice isoform variability. We also included in this analysis intestinal epithelia, where Tcf7l2 function has been intensively studied. Our data reveal extensive variability of Tcf7l2 splicing in the central nervous system. Additional variability in brain-expressed Tcf7l2 is generated by a length polymorphism of expressed mRNAs in a stretch of normally nine adenines found at the beginning of exon 18, reminiscent of variability observed at the same site in cancers with microsatellite instability. A consensus emerging from our data is that the expression of isoforms comprising or lacking the C-clamp motif, which has been linked by in vitro studies to the regulation of cell growth, is indeed tightly correlated with the proliferative status in vivo. © 2009 Wiley-Liss, Inc. [source] |