Home About us Contact | |||
Infant Rats (infant + rat)
Selected AbstractsEarly Responsiveness to Stimuli Paired With Different Stages Within the State of Alcohol IntoxicationALCOHOLISM, Issue 5 2002Ricardo M. Pautassi Background: Infant rats quickly learn to avoid a sensory cue paired with alcohol as an unconditioned stimulus, particularly when the drug reaches peak blood concentrations. In this study, a tactile cue paired with the onset of alcohol intoxication preceded subsequent presentations of a gustatory conditioned stimulus (CS). The goal was to address the possibility of differential conditioning depending on when stimuli were introduced during the course of the toxic state. Methods: In experiment 1, rat pups received sequential presentations of a salient texture (sandpaper) and a gustatory cue (saccharin) while intoxicated with a 2.5 g/kg alcohol dose or after receiving saline. Texture location tests and saccharin intake assessments were then performed. A third modality of assessment was defined by a saccharin intake test while pups simultaneously experienced sandpaper. In experiment 2, alcohol-mediated conditioning was followed by tests similar to those of experiment 1, but after pups were re-exposed to either the tactile CS or the alcohol-unconditioned stimulus. Results: Conditioned taste aversions, due to pairing saccharin and the later stage of alcohol intoxication, were reliably established in both experiments. Also in both experiments, this excitatory aversive response was dramatically inhibited when the association between the texture CS and the earlier stage of alcohol intoxication was activated. There were no indications of conditioned motor responses to the tactile CS that might compete with intake behavior of saccharin or distort measurement of an appetitive memory derived from pairing the texture and the earlier stage of intoxication. Conclusions: Rat pups' expression of an association between a taste signaling aversive consequences of alcohol was eliminated by the presence of a tactile stimulus that originally had signaled the absence of aversive consequences of alcohol intoxication. The results suggest the interaction of inhibitory and excitatory conditioning involving the aversive properties of alcohol. [source] Regional Fos expression induced by morphine withdrawal in the 7-day-old ratDEVELOPMENTAL PSYCHOBIOLOGY, Issue 7 2009Anika A. McPhie Abstract Human infants are often exposed to opiates chronically but the mechanisms by which opiates induce dependence in the infant are not well studied. In the adult the brain regions involved in the physical signs of opiate withdrawal include the periaqueductal gray area, the locus coeruleus, amygdala, ventral tegmental area, nucleus accumbens, hypothalamus, and spinal cord. Microinjection studies show that many of these brain regions are involved in opiate withdrawal in the infant rat. Our goal here was to determine if these regions become metabolically active during physical withdrawal from morphine in the infant rat as they do in the adult. Following chronic morphine or saline treatment, withdrawal was precipitated in 7-day-old pups with the opiate antagonist naltrexone. Cells positive for Fos-like immunoreactivity were quantified within select brain regions. Increased Fos-like labeled cells were found in the periaqueductal gray, nucleus accumbens, locus coeruleus, and spinal cord. These are consistent with other studies showing that the neural circuits underlying the physical signs of opiate withdrawal are similar in the infant and adult. © 2009 Wiley Periodicals, Inc. Dev Psychobiol 51: 544,552, 2009. [source] The ontogeny of postingestive inhibitory stimuli: Examining the role of CCKDEVELOPMENTAL PSYCHOBIOLOGY, Issue 5 2006Aron Weller Abstract Cholecystokinin (CCK) inhibits food intake in adults. This paper describes research examining the ability of CCK to affect feeding in infant rats and the role of CCK in the developmentally emerging ability of the rat pup to inhibit ingestion in response to sensory characteristics of food. First, data will be described from studies that asked if the CCK system is functional in preweanling rats. Specifically, these studies examined whether exogenous and endogenous CCK can decrease intake of the infant rat during independent ingestion (of a milk diet, away from the dam). In addition, the ability of exogenous CCK to activate central feeding-control areas in the brain stem and hypothalamus in infant rats was examined by C-FOS staining. Next, experiments examining which specific intake-inhibitory sensory aspects of food are mediated by CCK will be described. The volume, hypertonicity, fat, carbohydrate and protein content of a preload were separately manipulated in different studies, followed closely by a 30-min test meal. The selective CCK1 receptor antagonist devazepide was used to assess CCK mediation of the control of intake produced by particular sensory aspects of food, at the earliest age in which this ability to control intake appears. Finally, the pattern of independent ingestion in infant OLETF rats lacking CCK1 receptors was examined. The results suggest that the CCK intake-inhibitory mechanism is potentially available to the young, suckling pup even before it starts to feed on its own. However, it appears to mediate only a portion of the controls of intake during nursing and early stages of weaning. Some aspects of the CCK system (e.g., forebrain-hindbrain connections) and CCK's role in mediating the effects of other stimulus aspects of food apparently undergo a post-weaning maturational process. © 2006 Wiley Periodicals, Inc. Dev Psychobiol 48: 368,379, 2006. [source] Domperidone interferes with conditioned disgust reactions but not taste avoidance evoked by a LiCl-paired taste in infant ratsDEVELOPMENTAL PSYCHOBIOLOGY, Issue 4 2008Ricardo Marcos Pautassi Abstract Rats exhibit taste avoidance and conditioned disgust reactions when stimulated with a tastant paired with lithium chloride (LiCl). Lithium-mediated activation of chemoreceptor nuclei at the brainstem appears to determine the acquisition of conditioned taste aversion (CTA) in adult rodents. Domperidone (DOM), an anti-emetic drug that does not cross the blood,brain barrier, was employed to analyze mechanisms underlying LiCl-mediated CTA in infant rats. On postnatal day 13 animals were given DOM followed by a pairing between intraoral saccharin and LiCl. Saccharin consumption at testing was lower in lithium-treated pups than in controls. DOM did not interfere with this LiCl-mediated taste avoidance but significantly decreased LiCl-mediated disgust reactions (head-shaking and wall climbing). Activation of the emetic system of the brainstem does not seem necessary for the acquisition of LiCl-mediated conditioned taste avoidance. Yet, these centers seem to be involved in the palatability shift resulting from taste-LiCl pairings. These results indicate an early dissociation between conditioned disgust reactions and conditioned taste avoidance. © 2008 Wiley Periodicals, Inc. Dev Psychobiol 50: 343,352, 2008. [source] The ontogeny of postingestive inhibitory stimuli: Examining the role of CCKDEVELOPMENTAL PSYCHOBIOLOGY, Issue 5 2006Aron Weller Abstract Cholecystokinin (CCK) inhibits food intake in adults. This paper describes research examining the ability of CCK to affect feeding in infant rats and the role of CCK in the developmentally emerging ability of the rat pup to inhibit ingestion in response to sensory characteristics of food. First, data will be described from studies that asked if the CCK system is functional in preweanling rats. Specifically, these studies examined whether exogenous and endogenous CCK can decrease intake of the infant rat during independent ingestion (of a milk diet, away from the dam). In addition, the ability of exogenous CCK to activate central feeding-control areas in the brain stem and hypothalamus in infant rats was examined by C-FOS staining. Next, experiments examining which specific intake-inhibitory sensory aspects of food are mediated by CCK will be described. The volume, hypertonicity, fat, carbohydrate and protein content of a preload were separately manipulated in different studies, followed closely by a 30-min test meal. The selective CCK1 receptor antagonist devazepide was used to assess CCK mediation of the control of intake produced by particular sensory aspects of food, at the earliest age in which this ability to control intake appears. Finally, the pattern of independent ingestion in infant OLETF rats lacking CCK1 receptors was examined. The results suggest that the CCK intake-inhibitory mechanism is potentially available to the young, suckling pup even before it starts to feed on its own. However, it appears to mediate only a portion of the controls of intake during nursing and early stages of weaning. Some aspects of the CCK system (e.g., forebrain-hindbrain connections) and CCK's role in mediating the effects of other stimulus aspects of food apparently undergo a post-weaning maturational process. © 2006 Wiley Periodicals, Inc. Dev Psychobiol 48: 368,379, 2006. [source] A new animal model of infantile spasms with unprovoked persistent seizuresEPILEPSIA, Issue 2 2008Chong L. Lee Summary Purpose: Infantile spasms is one of the most severe epileptic syndromes of infancy and early childhood. Progress toward understanding the pathophysiology of this disorder and the development of effective therapies has been hindered by the lack of a relevant animal model. We report here the creation of such a model. Methods: The sodium channel blocker, tetrodotoxin (TTX), was chronically infused into the developing neocortex or hippocampus of infant rats by way of an osmotic minipump starting on postnatal day 10,12. Results: After a minimum of 10 days of infusion, approximately one-third of these rats began to display very brief (1,2 s) spasms, which consisted of symmetric or asymmetric flexion or extension of the trunk and sometimes involvement of one or both forelimbs. The typical ictal EEG pattern associated with the behavioral spasms consisted of an initial generalized, high amplitude, slow wave followed by an electrodecrement with superimposed fast activity. The interictal EEG revealed multifocal spikes and sharp waves, and in most animals that had spasms a hypsarrhythmic pattern was seen, at least intermittently, during NREM sleep. Like in humans, the spasms in the rat often occurred in clusters especially during sleep,wake transitions. Comparison of the ictal and interictal EEGs recorded in this model and those from humans with infantile spasms revealed that the patterns and the frequency components of both the ictal events and hypsarrhythmia were very similar. Discussion: The TTX model of infantile spasms should be of value in furthering an understanding of the pathophysiology of this seizure disorder. [source] Recruitment and selection of marginal zone B,cells is independent of exogenous antigensEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 7 2005Peter Abstract Marginal zone B (MZ-B) cells of the spleen contribute significantly to the immunity against invasive infections with polysaccharide-encapsulated bacteria. Recent evidence indicates that recruitment and selection of MZ-B,cells occurs on the basis of positive selection constraints that likely operate via B,cell receptor (BCR) signaling. Previous studies have shown that MZ-B,cells carry relatively shorter immunoglobulin (Ig) heavy (H) chain complementarity-determining region,3 (H-CDR3) sequences and express BCR which are thought to be polyreactive. In this scenario, MZ-B,cell selection proceeds via engagement of the BCR with exogenous (i.e. microbial gut flora-derived) and/or endogenous (self) antigens. Here, we studied the influence of exogenous antigens on the selection process of MZ-B,cells using non-genetically manipulated adult germ-free and conventionally reared infant rats. This study was carried out by H-CDR3 spectratype analysis of VH(PC7183)-encoded Ig VHDJH -, transcripts expressed by purified splenic MZ-B,cells and other B,cell subsets. We show that MZ-B,cells in both adult germ-free and conventionally reared infant (14-day-old) rats are H-CDR3-selected cells, providing strong evidence that recruitment and selection of MZ-B,cells is driven by self antigens. [source] Electrophysiological study of infant and adult rats under acute intoxication with fluoroacetamideJOURNAL OF APPLIED TOXICOLOGY, Issue 6 2007Sergey V. Kuznetsov Abstract A study was conducted of acute intoxication of infant and adult Wistar rats with fluoroacetamide (FAA), an inhibitor of oxidative metabolism. FAA was administered orally to adult rats at 1/2 LD50 and subcutaneously to infant rats at LD100 or 1/10 LD50. Electrocardiogram (ECG), respiration and motor activity were registered for 7 days. Clinical analysis of ECG and the heart rate variability (HRV) was carried out to assess the state of the vegetative nervous system. In adult rats, FAA caused marked disturbances in the activity of cardiovascular and respiratory systems, including the development of a potentially lethal acute cor pulmonale. Conversely, there were no significant changes of cardiac function and respiration in infant rats; they died because of extreme emaciation accompanied by retardation of development. In adult rats, bursts of associated cardiac and respiratory tachyarrhythmia, as well as regular high amplitude spasmodic sighs having a deca-second rhythm were observed. In both infant and adult rats, FAA caused short-term enhancement of humoral (metabolic) and sympathetic activities, followed by a gradual and stable predominance of parasympathetic influence on HRV. Under conditions of FAA inhibition of the tricarboxylic acid cycle, the observed physiological reactions may be explained by activation of alternative metabolic pathways. This is also supported by a lack of ontogenetically caused inhibition of spontaneous motor activity in infant rats poisoned with FAA, which highlights the significance of the alternative metabolic pathways for implementation of deca-second and minute rhythms and a lack of a rigid dependence of these rhythms upon activity of neuronal networks. Copyright © 2007 John Wiley & Sons, Ltd. [source] Ethanol as a Reinforcer in the Newborn's First Suckling ExperienceALCOHOLISM, Issue 3 2001Sarah J. Cheslock Background: Recent evidence suggests that human infants prefer alcohol-flavored milk when fed through a bottle. Animal models also indicate a surprising predisposition for neonatal and infant rats to voluntarily and willingly ingest ethanol. These findings suggest high susceptibility to the reinforcing properties of ethanol early in ontogeny. Methods: A surrogate nipple technique,a highly effective tool for investigation of the reinforcing properties of different fluids,was applied in the present study. Tests of ethanol reinforcement were accomplished in terms of two basic paradigms of Pavlovian conditioning. In one paradigm, the conditioned stimulus (CS) was the surrogate nipple, and in the other, the CS was a novel odor. Results: Newborn rats showed sustained attachment to the nipple providing 5% ethanol, and later reproduced this behavioral pattern toward the empty nipple (CS alone). Ingestion of ethanol yielding appetitive reinforcement was accompanied by detectable blood alcohol concentrations, with most in the range of 20,30 mg/dl. The reinforcing efficacy of ethanol was also confirmed in the classical olfactory conditioning paradigm: following pairing with intraoral ethanol infusions, the odor (CS) alone elicited sustained attachment to an empty nipple. Females showed better olfactory conditioning with low concentrations of ethanol, whereas males were effectively more conditioned to high concentrations. Although there were no reinforcing consequences of intraperitoneally injected ethanol [as an unconditioned stimulus (US)] when a neutral odor was the CS, when paired with ingestion of water from a nipple, the injection of ethanol had a reinforcing effect. Conclusions: The present series of experiments revealed ethanol reinforcement in the newborn rat. Two varieties of Pavlovian conditioning established that ethanol can serve as an effective US, and hence reinforcer, in such a way as to increase the approach and responsiveness toward stimuli paired with that US, indicating appetitive reinforcement. [source] Genetic analysis of Escherichia coli K1 gastrointestinal colonizationMOLECULAR MICROBIOLOGY, Issue 6 2000J. Martindale Strains of Escherichia coli expressing the K1 polysaccharide capsule colonize the large intestine of newborn infants, and are the leading cause of Gram-negative septicaemia and meningitis in the neonatal period. We used signature-tagged mutagenesis (STM) to identify genes that E. coli K1 requires to colonize the gastrointestinal (GI) tract. A total of 2140 mTn5 mutants was screened for their capacity to colonize the GI tract of infant rats, and 16 colonization defective mutants were identified. The mutants have transposon insertions in genes affecting the synthesis of cell surface structures, membrane transporters, transcriptional regulators, enzymes in metabolic pathways, and in genes of unknown function, designated dgc (defective in GI colonization). Three dgcs are absent from the whole genome sequence of E. coli K-12, although related sequences are found in other pathogenic strains of E. coli and in Shigella flexneri. Additionally, immunohistochemistry was used to define the nature of the colonization defect in five mutants including all dgc mutants. STM was successfully applied to examine the factors involved in E. coli K1 colonization, and the findings are relevant to the pathogenesis of other enteric infections. [source] |