Induced Genes (induced + gene)

Distribution by Scientific Domains


Selected Abstracts


STABILITY AND EVOLUTION OF OVERLAPPING GENES

EVOLUTION, Issue 3 2000
David C. Krakauer
Abstract., When the same sequence of nucleotides codes for regions of more than one functional polypeptide, this sequence contains overlapping genes. Overlap is most common in rapidly evolving genomes with high mutation rates such as viruses, bacteria, and mitochondria. Overlap is thought to be important as: (1) a means of compressing a maximum amount of information into short sequences of structural genes; and (2) as a mechanism for regulating gene expression through translational coupling of functionally related polypeptides. The stability of overlapping codes is examined in relation to the information cost of overlap and the mutation rate of the genome. The degree of overlap in a given population will tend to become monomorphic. Evolution toward partial overlap of genes is shown to depend on a convex cost function of overlap. Overlap does not evolve when expression of overlapping genes is mutually exclusive and produced by rare mutations to the wild-type genome. Assuming overlap increases coupling between functionally related genes, the conditions favoring overlap are explored in relation to the kinetics of gene activation and decay. Coupling is most effective for genes in which the gene overlapping at its 5'end (leading gene) decays rapidly, while the gene overlapping at the 3'end (induced gene) decays slowly. If gene expression can feedback on itself (autocatalysis), then high rates of activation favor overlap. [source]


Transcriptional profiling of Francisella tularensis infected peripheral blood mononuclear cells: a predictive tool for tularemia

FEMS IMMUNOLOGY & MEDICAL MICROBIOLOGY, Issue 1 2008
Chrysanthi Paranavitana
Abstract In this study, we analyzed temporal gene expression patterns in human peripheral blood mononuclear cells (PBMCs) infected with the Francisella tularensis live vaccine strain from 1 to 24 h utilizing a whole human Affymetrix® gene chip. We found that a considerable number of induced genes had similar expression patterns and functions as reported previously for gene expression profiling in patients with ulceroglandular tularemia. Among the six uniquely regulated genes reported for tularemia patients as being part of the alarm signal gene cluster, five, namely caspase 1, PSME2, TAP-1, GBP1, and GCH1, were induced in vitro. We also detected four out of the seven potential biomarkers reported in tularemia patients, namely TNFAIP6 at 4 h and STAT1, TNFSF10, and SECTM1 at 16 and 24 h. These observations underscore the value of using microarray expression profiling as an in vitro tool to identify potential biomarkers for human infection and disease. Our results indicate the potential involvement of several host pathways/processes in Francisella infection, notably those involved in calcium, zinc ion binding, PPAR signaling, and lipid metabolism, which further refines the current knowledge of F. tularensis infection and its effects on the human host. Ultimately, this study provides support for utilizing in vitro microarray gene expression profiling in human PBMCs to identify biomarkers of infection and predict in vivo immune responses to infectious agents. [source]


A hierarchical analysis of transcriptome alterations in intrauterine growth restriction (IUGR) reveals common pathophysiological pathways in mammals,

THE JOURNAL OF PATHOLOGY, Issue 3 2007
C Buffat
Abstract Intra-uterine growth restriction (IUGR) is a frequent disease, affecting up to 10% of human pregnancies and responsible for increased perinatal morbidity and mortality. Moreover, low birth weight is an important cause of the metabolic syndrome in the adult. Protein depletion during the gestation of rat females has been widely used as a model for human IUGR. By transcriptome analysis of control and protein-deprived rat placentas, we were able to identify 2543 transcripts modified more than 2.5 fold (1347 induced and 1196 repressed). Automatic functional classification enabled us to identify clusters of induced genes affecting chromosome structure, transcription, intracellular transport, protein modifications and apoptosis. In particular, we suggest the existence of a complex balance regulating apoptosis. Among repressed genes, we noted several groups of genes involved in immunity, signalling and degradation of noxious chemicals. These observations suggest that IUGR placentas have a decreased resistance to external aggression. The promoters of the most induced and most repressed genes were contrasted for their composition in putative transcription factor binding sites. There was an over-representation of Znfinger (ZNF) proteins and Pdx1 (pancreatic and duodenal homeobox protein 1) putative binding sites. Consistently, Pdx1 and a high proportion of ZNF genes were induced at the transcriptional level. A similar analysis of ZNF promoters showed an increased presence of putative binding sites for the Tata box binding protein (Tbp). Consistently again, we showed that the Tbp and TBP-associated factors (Tafs) were up-regulated in IUGR placentas. Also, samples of human IUGR and control placentas showed that human orthologous ZNFs and PDX1 were transcriptionnally induced, especially in non-vascular IUGR. Immunohistochemistry revealed increased expression of PDX1 in IUGR human placentas. In conclusion, our approach permitted the proposition of hypotheses on a hierarchy of gene inductions/repressions leading to massive transcriptional alterations in the IUGR placenta, in humans and in rodents. Copyright © 2007 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. [source]


The immediate-early ethylene response gene OsARD1 encodes an acireductone dioxygenase involved in recycling of the ethylene precursor S -adenosylmethionine

THE PLANT JOURNAL, Issue 5 2005
Margret Sauter
Summary Methylthioadenosine (MTA) is formed as a by-product of ethylene biosynthesis from S -adenosyl- l -methionine (AdoMet). The methionine cycle regenerates AdoMet from MTA. In two independent differential screens for submergence-induced genes and for 1-aminocyclopropane-1-carboxylic acid (ACC)-induced genes from deepwater rice (Oryza sativa L.) we identified an acireductone dioxygenase (ARD). OsARD1 is a metal-binding protein that belongs to the cupin superfamily. Acireductone dioxygenases are unique proteins that can acquire two different activities depending on the metal ion bound. Ectopically expressed apo-OsARD1 preferentially binds Fe2+ and reconstituted Fe-OsARD1 catalyzed the formation of 2-keto-pentanoate and formate from the model substrate 1,2-dihydroxy-3-ketopent-1-ene and dioxygen, indicating that OsARD1 is capable of catalyzing the penultimate step in the methionine cycle. Two highly homologous ARD genes were identified in rice. OsARD1 mRNA levels showed a rapid, early and transient increase upon submergence and after treatment with ethylene-releasing compounds. The second gene from rice, OsARD2, is constitutively expressed. Accumulation of OsARD1 transcript was observed in the same internodal tissues, i.e. the meristem and elongation zone, which were previously shown to synthesize ethylene. OsARD1 transcripts accumulated in the presence of cycloheximide, an inhibitor of protein synthesis, indicating that OsARD1 is a primary ethylene response gene. Promoter analysis suggests that immediate-early regulation of OsARD1 by ethylene may involve an EIN3-like transcription factor. OsARD1 is induced by low levels of ethylene. We propose that early feedback activation of the methionine cycle by low levels of ethylene ensures the high and continuous rates of ethylene synthesis required for long-term ethylene-mediated submergence adaptation without depleting the tissue of AdoMet. [source]


The CGGGG insertion/deletion polymorphism of the IRF5 promoter is a strong risk factor for primary Sjögren's syndrome

ARTHRITIS & RHEUMATISM, Issue 7 2009
Corinne Miceli-Richard
Objective Interferon regulatory factor 5 is a transcription factor involved in type I interferon (IFN) secretion. This study was undertaken to investigate whether a 5-bp (CGGGG insertion/deletion) promoter polymorphism is involved in genetic predisposition to primary Sjögren's syndrome (SS) and to assess the functional consequences of this polymorphism. Methods The exploratory cohort consisted of 185 patients with primary SS and 157 healthy controls, and the replication cohort consisted of 200 patients with primary SS and 282 healthy controls. Levels of IRF5 messenger RNA (mRNA) were assessed at baseline and after in vitro infection with reovirus in peripheral blood mononuclear cells (PBMCs) from 30 patients with primary SS and from salivary gland epithelial cells that had been cultured for 4 weeks from patients with primary SS or sicca symptoms. Results Carriage of the IRF5 4R CGGGG allele was associated with a greatly increased risk of primary SS in both cohorts (odds ratio 2.00 [95% confidence interval 1.5,2.7], P = 6.6 × 10,6). The CGGGG insertion/deletion polymorphism alone was sufficient to explain the association of primary SS with IRF5. The level of IRF5 mRNA in PBMCs depended significantly on genotype (P = 0.002) and was correlated with the levels of mRNA for the IFN-induced genes MX1 and IFITM1. Cultured salivary gland epithelial cells from patients carrying the 4R CGGGG IRF5 allele showed a high level of IRF5 mRNA (P = 0.04), which was amplified after reovirus infection (P = 0.026). Conclusion Our findings indicate an association of the CGGGG insertion/deletion polymorphism of the IRF5 promoter with primary SS. Patients carrying the 4R CGGGG IRF5 allele had a high level of mRNA for IRF5 in PBMCs and salivary gland epithelial cells, mainly after in vitro viral infection. Patients with high levels of mRNA for IRF5 also had high levels of mRNA for type I IFN,induced genes in PBMCs. [source]