Home About us Contact | |||
Induced Diabetic Rats (induced + diabetic_rat)
Selected AbstractsOccurrence of oxidative impairments, response of antioxidant defences and associated biochemical perturbations in male reproductive milieu in the Streptozotocin-diabetic ratINTERNATIONAL JOURNAL OF ANDROLOGY, Issue 6 2007B. Shrilatha Summary Oxidative stress is implicated to play a vital role in the pathogenesis of various diabetic complications. While reproductive dysfunction is a well recognized consequence of diabetes mellitus, the underlying mechanisms are poorly understood. The present study aims to obtain insights into the incidence, extent and progression of oxidative impairments in testis and epididymal sperm (ES) in streptozotocin (STZ)-induced diabetic rat during early and progressive phase. Adult rats (CFT-Wistar strain) rendered diabetic by an acute dose of STZ (60 mg/kg bw, i.p.) were examined for induction of hyperglycaemia at 72 h, followed by the assessment of oxidative impairments in testis and ES over a 6-week period. Oxidative damage was ascertained by measuring the malondialdehyde levels, reactive oxygen species (ROS) generation, alterations in antioxidant defences and extent of protein oxidation. STZ induced a significant (2.5-fold) increase in blood glucose levels. In diabetic rats, both testis and ES showed enhanced status of lipid peroxidation measured as increased TBARS and ROS from week 2 onwards. These impairments in testis were consistent, progressive and accompanied by marked alterations in antioxidant defences and elevated protein carbonyls. Varying degree of reduction in the specific activities of antioxidant enzymes was evident in testis and ES, while the activity of glutathione- S -transferase (GST) was significantly elevated. Reduced glutathione (GSH) and vitamin E levels were consistently reduced in testis. Lipid dysmetabolism measured in terms of increased cholesterol, triglycerides and phospholipids was evident only beyond week 2 in diabetic testis. Taken together, these results indicate that the testis and ES are indeed subjected to significant oxidative stress in the STZ-diabetic rat both during early as well as progressive phase. It is hypothesized that oxidative impairments in testis which develop over time may at least in part contribute towards the development of testicular dysfunction eventually leading to testicular degeneration which culminates in reduced fertility during the progressive phase of STZ-induced diabetes in adult rats. [source] Antidiabetic and toxicological evaluations of naringenin in normoglycaemic and NIDDM rat models and its implications on extra-pancreatic glucose regulationDIABETES OBESITY & METABOLISM, Issue 11 2008R. R Ortiz-Andrade Aim:, The present investigation was designed to determine the in vivo antidiabetic effect of naringenin (NG) in normoglycaemic and diabetic rat models through blood glucose (GLU) measurements following acute and subchronic time periods. Possible modes of action of NG were investigated and its acute toxicity determined. Methods:, Normoglycaemic and non-insulin-dependent diabetes mellitus (NIDDM) rat models were treated for acute and subchronic (5 days) time periods with 50 mg/kg/day of NG. Blood biochemical profiles were determined after 5 days of the treatment in normoglycaemic and NIDDM rats using commercial kits for GLU, triglycerides (TG), total cholesterol (CHOL) and high-density lipoprotein (HDL). In order to elucidate its antidiabetic mode of action, NG was administered intragastrically and an oral glucose tolerance test performed using GLU and sucrose (2 g/kg) as substrates. The inhibitory effect of a single concentration of NG (10 ,M) on 11,-hydroxysteroid dehydrogenase type 1 (11,-HSD1) activity in vitro was determined. Finally, the preclinical safety and tolerability of NG was determined by toxicological evaluation in mice and rats using Organization for Economic Cooperation and Development (OECD) protocols. Results:, Intragastrically administered NG (50 mg/kg) induced a significant decrease in plasma GLU in normoglycaemic and NIDDM rat models (p < 0.05) following acute and subchronic time periods. After 5 days of administration, NG produced significant diminished blood GLU and TG levels in streptozotocin,nicotinamide,induced diabetic rats. The administration of NG to normal rats significantly increased the levels of TG, CHOL and HDL (p < 0.05). NG (5 and 50 mg/kg) induced a total suppression in the increase of plasma GLU levels after administration of substrates (p < 0.01), but NG did not produce inhibition of ,-glucosidase activity in vitro. However, NG (10 ,M) was shown to inhibit 11,-HSD1 activity by 39.49% in a cellular enzyme assay. Finally, NG showed a Medium Lethal Dose LD50 > 5000 mg/kg and ranking at level five based on OECD protocols. Conclusion:, Our findings suggest that NG may exert its antidiabetic effect by extra-pancreatic action and by suppressing carbohydrate absorption from intestine, thereby reducing the postprandial increase in blood GLU levels. [source] Insulin mimetic effects of macrocyclic binuclear oxovanadium complexes on streptozotocin-induced experimental diabetes in ratsDIABETES OBESITY & METABOLISM, Issue 6 2003B. Ramachandran Aim:, The vanadium complexes so far tested for their insulin mimetic effects are either mono- or binuclear and contain only acyclic ligands. The leaching or hydrolysis of vanadyl ions from these complexes is much easier, and hence they elicit side effects. In the present study, a new binuclear macrocyclic oxovanadium complex was synthesized, and its efficacy was studied on streptozotocin (STZ)-induced diabetic rats over a period of 30 days. Methods:, The insulin mimetic effect of the complex was tested on the blood sugar level in the STZ-diabetic rats and on the activities of the carbohydrate-metabolizing enzymes present in the liver. Results:, Administration of vanadium complex to STZ-induced diabetic rats decreased blood glucose levels from hyperglycaemic to normoglycaemic when compared to diabetic rats. The activity of carbohydrate-metabolizing enzymes such as hexokinase, glucose-6-phosphate dehydrogenase, glycogen synthase and glycogen content were increased to near normal in vanadium complex-administered diabetic rats. The biochemical studies such as assay of blood urea and glutamate oxaloacetate transaminases revealed that the complex is not toxic to the system. Conclusion:, The nontoxic nature of this complex may be due to the presence of the vanadyl ions in an intact macrocyclic form. Further, the vanadyl ions present in the macrocyclic binuclear oxovanadium complex are very close to each other, and this may enhance the insulin mimetic activity by synergic effect. [source] Effects of aminoguanidine and tolrestat on the development of ocular and renal structural changes in experimental diabetic ratsDIABETES OBESITY & METABOLISM, Issue 1 2002Ö. Azal Studies that researched the role of aminoguanidine and tolestat in the prevention of diabetic retinopathy and nephropathy resulted in conflicting data. We investigated the effects of these agents in the prevention of ocular and renal changes in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced by intravenous injection of STZ in 30 rats. Ten rats that were not given STZ served as non-diabetic control (Group 1). Ten STZ-diabetic rats that were not given any treatment served as diabetic control (Group 2). Groups 3 and 4 were composed of STZ-induced diabetic rats (10 each) that were given tolrestat and aminoguanidine respectively. Eyes and kidneys were examined at the 24th week under electronmicroscopy. Cataract was observed in all six of the surviving rats in Groups 2 and 4, and in one of 6 surviving rats in group 3. Cataract development was lower in Group 3 than Groups 2 and 4. All retinal samples obtained from group 2 demonstrated a number of structural abnormalities, whereas there were no significant ultrastructural changes in groups 3 and 4. Groups 2 and 3 demonstrated mesangial proliferation and expansion, diffuse glomerular basement membrane (GBM) thickening, and focal GBM thickening in the bulb form. Group 4 demonstrated a normally appearing mesangial space, minimal diffuse but no focal GBM thickening. The urinary albumin excretion (UAE) was lower in Group 4 than the other groups. In conclusion, our results suggest that aminoguanidine may be an important agent for the prevention of renal changes, whereas tolrestat may be effective for the prevention of ocular changes in diabetes mellitus. [source] Relationship between protective effects of rosiglitazone on endothelium and endogenous nitric oxide synthase inhibitor in streptozotocin-induced diabetic rats and cultured endothelial cellsDIABETES/METABOLISM: RESEARCH AND REVIEWS, Issue 2 2007Shan Wang Abstract Background Previous investigations have indicated that the level of asymmetric dimethylarginine (ADMA) is increased in diabetic patients and animals, and rosiglitazone has a protective effect on the endothelium. In the present study, we tested the relationship between protective effects of rosiglitazone and ADMA in streptozotocin (STZ)-induced diabetic rats and cultured endothelial cells. Methods Blood samples were collected from carotid artery. Vasodilator responses to acetylcholine (ACh) in the isolated aortic rings were measured, and serum concentrations of glucose, lipid, nitrite/nitrate, ADMA and tumour necrosis factor-, (TNF-,) were determined. Cultured endothelial cells were treated with ADMA, and the concentrations of intercellular adhesion molecule (ICAM-1), TNF-,, and the activity of nuclear factor-,B (NF-,B) were determined. Results Vasodilator responses to ACh were decreased markedly and the serum concentrations of TNF-,, nitrite/nitrate and ADMA were increased significantly in diabetic rats. Rosiglitazone (3, 10 or 30 mg/kg) produced a significant reduction of the inhibition of vasodilator responses to ACh, but had no effect on the serum concentrations of glucose, lipid, nitrite/nitrate and ADMA in diabetic rats. ADMA (30 µM) significantly increased the activity of NF-,B and elevated the levels of ICAM-1 and TNF-,, and pre-treatment with rosiglitazone (10 or 30 µM) markedly inhibited the increased activity of NF-,B and reduced the elevated levels of TNF-, and ICAM-1 induced by ADMA in cultured endothelial cells. Conclusions Rosiglitazone improves endothelial function in diabetic rats, which is related to the reduction of the inflammatory response induced by ADMA. Copyright © 2006 John Wiley & Sons, Ltd. [source] Quercitrin, a bioflavonoid improves glucose homeostasis in streptozotocin-induced diabetic tissues by altering glycolytic and gluconeogenic enzymesFUNDAMENTAL & CLINICAL PHARMACOLOGY, Issue 3 2010Ranganathan Babujanarthanam Abstract The present study is an investigation into the role of quercitrin on carbohydrate metabolism in normal and streptozotocin (STZ)-induced diabetic rats. Administration of STZ leads to a significant increase (P < 0.05) in fasting plasma glucose and a decrease in insulin levels. The content of glycogen is significantly decreased (P < 0.05) in liver and muscle, but increased in the kidney. The activity of hexokinase decreased whereas the activities of glucose 6-phosphatase and fructose 1,6-bisphosphatase significantly increased (P < 0.05) in the tissues. Oral administration of quercitrin (30 mg/kg) to diabetic rats for a period of 30 days resulted in significant (P < 0.05) alterations in the parameters studied but not in normal rats. A decrease of plasma glucose and increase in insulin levels were observed along with the restoration of glycogen content and the activities of carbohydrate metabolic enzymes in quercitrin-treated diabetic rats. The histopathological study of the pancreas revealed the protective role of quercitrin. There was an expansion of the islets and decreased fatty infiltrate of the islets in quercitrin treated diabetic rats. In normal rats treated with quercitrin, we could not observe any significant change in all the parameters studied. Combined, these results show that quercitrin plays a positive role in carbohydrate metabolism and antioxidant status in diabetic rats. [source] Activation of dorsal horn microglia contributes to diabetes-induced tactile allodynia via extracellular signal-regulated protein kinase signalingGLIA, Issue 4 2008Makoto Tsuda Abstract Painful neuropathy is one of the most common complications of diabetes, one hallmark of which is tactile allodynia (pain hypersensitivity to innocuous stimulation). The underlying mechanisms of tactile allodynia are, however, poorly understood. Emerging evidence indicates that, following nerve injury, activated microglia in the spinal cord play a crucial role in tactile allodynia. However, it remains unknown whether spinal microglia are activated under diabetic conditions and whether they contribute to diabetes-induced tactile allodynia. In the present study, using streptozotocin (STZ)-induced diabetic rats that displayed tactile allodynia, we found several morphological changes of activated microglia in the dorsal horn. These included increases in Iba1 and OX-42 labeling (markers of microglia), hypertrophic morphology, the thickness and the retraction of processes, and in the number of activated microglia cells. Furthermore, in the dorsal horn of STZ diabetic rats, extracellular signal-regulated protein kinase (ERK) and an upstream kinase, Src-family kinase (SFK), both of which are implicated in microglial functions, were activated exclusively in microglia. Moreover, inhibition of ERK phosphorylation in the dorsal horn by intrathecal administration of U0126, an inhibitor of ERK activation, produced a striking alleviation of existing, long-term tactile allodynia of diabetic rats. We also found that a single administration of U0126 reduced the expression of allodynia. Together, these results suggest that activated dorsal horn microglia may be a crucial component of diabetes-induced tactile allodynia, mediated, in part, by the ERK signaling pathway. Thus, inhibiting microglia activation in the dorsal horn may represent a therapeutic strategy for treating diabetic tactile allodynia. © 2008 Wiley-Liss, Inc. [source] EFFECT OF BUTYRIC ACID SUPPLEMENTATION ON SERUM AND RENAL ANTIOXIDANT ENZYME ACTIVITIES IN STREPTOZOTOCIN-INDUCED DIABETIC RATSJOURNAL OF FOOD BIOCHEMISTRY, Issue 2010A. PUNEETH KUMAR ABSTRACT Reactive oxygen metabolites, which are constant products of normal aerobic cell metabolism, play a key role in worsening the pathophysiological complications of diabetes. The present investigation was aimed at understanding the effect of butyric acid supplementation along with wheatbran and guar gum on serum and renal antioxidant enzyme activities and lipid peroxidation in streptozotocin (STZ)-induced diabetic rats. Activities of superoxide dismutase, catalase, glutathione peroxidase were evaluated in serum and kidney of control and experimental rats. Results clearly showed that the altered activity of the enzymes during diabetes was significantly ameliorated by butyric acid (500 mg/kg body weight/day) supplementation compared with other experimental groups. Further, the increased lipid peroxidation in serum and kidney of diabetic rats was also significantly reduced in butyric acid-supplemented diabetic rats. The study led us to conclude that butyric acid exert antioxidant property, thereby minimizing oxidative stress induced diabetes and its related complications. PRACTICAL APPLICATIONS Butyric acid , a product of dietary fiber fermentation , is a four-carbon fatty acid, which has wide range of application in disease management. This product is involved in various physiological functions of body like cell differentiation, apoptosis, colonic homeostasis, histone acetylation, etc. It is also known to decrease the incidence of bowel cancer and some of its analogues are shown to selectively improve glucose-stimulated insulin release and glucose tolerance in both normal and diabetic rats. This study aims to evaluate the beneficial effects of butyric acid supplementation on oxidative stress-induced diabetic complications in rats. [source] Modulatory effects of Aloe vera leaf gel extract on oxidative stress in rats treated with streptozotocinJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 2 2005S. Rajasekaran Oxidative stress is currently suggested as a mechanism underlying diabetes and diabetic-related complications. Oxidative stress results from an imbalance between radical-generating and radical-scavenging systems. Many secondary plant metabolites have been reported to possess antioxidant activity. This study was designed to evaluate the potential antioxidative activity of the ethanolic extract from Aloe vera leaf gel in the plasma and pancreas of streptozotocin (STZ)-induced diabetic rats. Glibenclamide was used as a standard reference drug. Oral administration of ethanolic extract at a concentration of 300 mg kg,1 body weight for 21 days resulted in a significant reduction in fasting blood glucose, thiobarbituric acid reactive substances, hydroperoxides and alpha-tocopherol and significant improvement in ascorbic acid, reduced glutathione and insulin in the plasma of diabetic rats. Similarly, the treatment also resulted in a significant reduction in thiobarbituric acid reactive substances, hydroperoxides, superoxide dismutase, catalase and glutathione peroxidase and significant improvement in reduced glutathione in the pancreas of STZ-induced diabetic rats when compared with untreated diabetic rats. The ethanolic extract appeared to be more effective than glibenclamide in controlling oxidative stress. Thus, this study confirms the ethnopharmacological use of Aloe vera in ameliorating the oxidative stress found in diabetes. [source] Phrenic nerve diabetic neuropathy in rats: unmyelinated fibers morphometryJOURNAL OF THE PERIPHERAL NERVOUS SYSTEM, Issue 2 2009Valéria Paula S. Fazan Abstract We have demonstrated that phrenic nerves' large myelinated fibers in streptozotocin (STZ)-induced diabetic rats show axonal atrophy, which is reversed by insulin treatment. However, studies on structural abnormalities of the small myelinated and the unmyelinated fibers in the STZ-model of neuropathy are limited. Also, structural changes in the endoneural vasculature are not clearly described in this model and require detailed study. We have undertaken morphometric studies of the phrenic nerve in insulin-treated and untreated STZ-diabetic rats and non-diabetic control animals over a 12-week period. The presence of neuropathy was assessed by means of transmission electron microscopy, and morphometry of the unmyelinated fibers was performed. The most striking finding was the morphological evidence of small myelinated fiber neuropathy due to the STZ injection, which was not protected or reversed by conventional insulin treatment. This neuropathy was clearly associated with severe damage of the endoneural vessels present on both STZ groups, besides the insulin treatment. The STZ-diabetes model is widely used to investigate experimental diabetic neuropathies, but few studies have performed a detailed assessment of either unmyelinated fibers or capillary morphology in this animal model. The present study adds useful information for further investigations on the ultrastructural basis of nerve function in diabetes. [source] Effect of activin A on tubulointerstitial fibrosis in diabetic nephropathyNEPHROLOGY, Issue 3 2009XIAO-JUN REN SUMMARY Aim: The effect of activin A on tubulointerstitial fibrosis in diabetic nephropathy (DN) using streptozotocin (STZ)-induced diabetic rats and high glucose-cultured HK-2 cells was investigated. Methods: Male Wistar rats were randomized into a normal control group (NC) and diabetes mellitus group (DM). Diabetes was induced by i.p. injection of STZ. Six rats were respectively killed 4, 8, 12 and 16 weeks after model establishment in each group. The changes of kidney weight/bodyweight (KW/BW), urine albumin excretion rate (AER) and creatinine clearance rate (Ccr) were determined. The morphology of tubulointerstitium was observed by light microscopy. Further biochemical analysis was provided using immunohistochemistry and real-time polymerase chain reaction. The different parameters in high glucose-cultured HK-2 cells were monitored by western blotting or enzyme-linked immunosorbent assay (ELISA) and the intervention of rh-follistatin on them was investigated. Results: Compared with the NC group, there was marked enlargement in the levels of KW/BW, AER, Ccr and interstitial fibrosis index, and the production of P-Smad2/3 and fibronectin in the DM group from 8 to 16 weeks. Activin ,A, mainly located in tubular epithelial cells, was significantly higher in the DM group than that in the NC group throughout the study periods. Follistatin was abundant in the NC group, but was diminished gradually in the DM group. High glucose may facilitate the synthesis of activin ,A, transforming growth factor (TGF)-,, P-Smad2/3 and fibronectin in HK-2 cells while rh-follistatin inhibited them except TGF-,. Conclusion: Activin A is involved in tubulointerstitial fibrosis in DN by inducing the production of fibronectin through Smad signal pathway. [source] Antihyperglycaemic and protective effects of flavonoids on streptozotocin,induced diabetic ratsPHYTOTHERAPY RESEARCH, Issue S2 2010Amélia P. Rauter Abstract The antihyperglycaemic effect of eight standard flavonoids, previously identified in the ethanol extract of the claimed antidiabetic plant Genista tenera, was evaluated on streptozotocin (STZ)-induced diabetic Wistar rats. The aglycones apigenin, chrysoeriol and genistein, the monoglucosides apigenin 7- O -glucoside, luteolin 7- O -glucoside and genistein 7- O -glucoside and the diglycosides rutin and luteolin 7,3,-di- O -glucoside were administered i.p. for 7 days (4,mg/kg b.w./day). The protective effect of these compounds over liver and kidneys of STZ,diabetic models was also evaluated by the determination of seric AST, ALT and urea levels. After 7 days of treatment, apigenin, chrysoeriol and genistein significantly lowered the blood glucose levels of diabetic animals; this effect was more pronounced (P < 0.01) in the oral glucose tolerance test. Glucose tolerance was also significantly improved in the rutin (P < 0.01) and in the genistein 7,O,glucoside (P < 0.05) treated groups. In addition, almost all the tested compounds effectively protected the liver and kidneys against STZ-induced damage in rats. Copyright © 2010 John Wiley & Sons, Ltd. [source] Proteomic and transcriptomic analysis for streptozotocin-induced diabetic rat pancreas in response to fungal polysaccharide treatmentsPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 11 2008Sang Woo Kim Abstract In an attempt to search for novel biomarkers for monitoring diabetes prognosis, we examined the influence of the hypoglycemic fungal extracellular polysaccharides (EPS) on the differential change in pancreatic proteome and transcriptome in streptozotocin (STZ)-induced diabetic rats using 2-DE-based protein mapping and oligonucleotide microarray analysis. The 2-DE system separated more than 2000 individual spots, demonstrating that 34 proteins out of about 500 matched spots were differentially expressed. A total of 22 overexpressed and 12 underexpressed proteins in 2-DE map were observed (p<0.05) between the healthy and diabetic rats, of which 26 spots were identified by PMF analysis. Of these, significant down regulation of carbonyl reductase (Cbr), hydroxymethylglutaryl-CoA synthase (HMGCS), and putative human mitogen-activated protein kinase activator with WD repeats-binding protein (MAWDBP) in diabetic pancreas were reported for the first time in this study. When treated with EPS, all these four proteins were reverted to normal levels. The microarray analysis revealed that 96 out of 1272 genes were down- or up-regulated in the diabetic rats and the altered transcript levels of many of these genes were reversed after EPS treatment. In particular, ROS generation in rat islets was significantly increased after STZ treatment, thereafter EPS treatment was likely to play a preventive role in ,-cell destruction mediated by STZ. Taken together, EPS may act as a potent regulator of gene expression for a wide variety of genes in diabetic rats, particularly in antioxidative stress, insulin biosynthesis, and cell proliferation. [source] Role of Increased Penile Expression of Transforming Growth Factor-,1 and Activation of the Smad Signaling Pathway in Erectile Dysfunction in Streptozotocin-Induced Diabetic RatsTHE JOURNAL OF SEXUAL MEDICINE, Issue 10 2008Lu Wei Zhang MD ABSTRACT Introduction., It has been suggested that transforming growth factor-,1 (TGF-,1) plays an important role in the pathogenesis of diabetes-induced erectile dysfunction. Aim., To investigate the expression and activity of Smad transcriptional factors, the key molecules for the initiation of TGF-,-mediated fibrosis, in the penis of streptozotocin (STZ)-induced diabetic rats. Methods., Fifty-two 8-week-old Sprague,Dawley rats were used and divided into control and diabetic groups. Diabetes was induced by an intravenous injection of STZ. Main Outcome Measures., Eight weeks later, erectile function was measured by electrical stimulation of the cavernous nerve (N = 12 per group). The penis was harvested and stained with Masson trichrome or antibody to TGF-,1, phospho-Smad2 (P-Smad2), smooth muscle ,-actin, and factor VIII (N = 12 per group). Penis specimens from a separate group of animals were used for TGF-,1 enzyme-linked immunosorbent assay (ELISA), P-Smad2/Smad2, phospho-Smad3 (P-Smad3)/Smad3, fibronectin, collagen I, and collagen IV western blot, or hydroxyproline determination. Results., Erectile function was significantly reduced in diabetic rats compared with that in controls. The expression of TGF-,1, P-Smad2, and P-Smad3 protein evaluated by ELISA or western blot was higher in diabetic rats than in controls. Compared with that in control rats, P-Smad2 expression was higher mainly in smooth muscle cells and fibroblasts of diabetic rats, whereas no significant differences were noted in endothelial cells or in the dorsal nerve bundle. Cavernous smooth muscle and endothelial cell contents were lower in diabetic rats than in controls. Cavernous fibronectin, collagen IV, and hydroxyproline content was significantly higher in diabetic rats than in controls. Conclusion., Upregulation of TGF-,1 and activation of the Smad signaling pathway in the penis of diabetic rats might play important roles in diabetes-induced structural changes and deterioration of erectile function. Zhang LW, Piao S, Choi MJ, Shin H-Y, Jin H-R, Kim WJ, Song SU, Han J-Y, Park SH, Mamura M, Kim S-J, Ryu J-K, and Suh J-K. Role of increased penile expression of transforming growth factor-,1 and activation of the Smad signaling pathway in erectile dysfunction in streptozotocin-induced diabetic rats. J Sex Med 2008;5:2318,2329. [source] The Breakdown of Preformed Advanced Glycation End Products Reverses Erectile Dysfunction in Streptozotocin-Induced Diabetic Rats: Preventive Versus Curative TreatmentTHE JOURNAL OF SEXUAL MEDICINE, Issue 2 2006Mustafa F. Usta MD ABSTRACT Objectives., Accumulation of advanced glycation end products (AGEs) has been linked to many of the complications of diabetes mellitus, including erectile dysfunction (ED). Furthermore, it has been demonstrated that inhibitors of AGE formation, such as aminoguanidine, can prevent ED in diabetic animals. However, it is unknown whether late administration of a putative cross-link breaker, ALT-711, can reverse diabetic ED. We therefore compared ALT-711 and aminoguanidine in their ability to reverse ED in diabetic rats. Materials and Methods., Male Sprague,Dawley rats were randomly divided into four groups: (i) age-matched controls; (ii) streptozotocin (STZ)-induced diabetic rats (60 mg/kg; intraperitoneal injection); (iii) STZ diabetic rats treated with ALT-711 (3 mg/kg/day, intraperitoneal injection); and (iv) STZ diabetic rats treated with aminoguanidine (1 gm/L in drinking water) during the final 6 weeks of 12 weeks of induced diabetes. At the end of 12 weeks, erectile response to cavernous nerve stimulation (CNS) was determined. Neuronal nitric oxide synthase (nNOS) contents were measured in all penises, and AGE levels were determined both in penile tissues and in serum samples. Results., Erectile responses to CNS and penile nNOS protein content were significantly reduced, while AGE levels were elevated in the penises and serum of untreated diabetic animals. Treatment with ALT-711, but not with aminoguanidine, reversed ED and nNOS depletion and reduced serum and penile tissue AGE levels. Conclusions., These results suggest that cross-link breakers, such as ALT-711, are the optimal therapeutic approach, compared with treatment with inhibitors of AGE formation, in the reversal of diabetes-related ED. Usta MF, Kendirci M, Gur S, Foxwell NA, Bivalacqua TJ, Cellek S, and Hellstrom WJG. The breakdown of preformed advanced glycation end products reverses erectile dysfunction in streptozotocin-induced diabetic rats: Preventive versus curative treatment. J Sex Med 2006;3:242,252. [source] Vanadyl sulfate protects against streptozotocin-induced morphological and biochemical changes in rat aortaCELL BIOCHEMISTRY AND FUNCTION, Issue 6 2007Kadriye Akgün-Dar Abstract The aim of this study was to investigate the protective effects of vanadyl sulfate on aorta tissue of normal and streptozotocin (STZ)-induced diabetic rats, morphologically and biochemically. The animals were made diabetic by an intraperitoneal injection of streptozotocin (65,mg/kg) and vanadyl sulfate (100,mg/kg) that was given every day for 60 days by gavage technique to rats. Under the light and transmission electron microscopes, hypertrophy of the vessel wall, focal disruption in the elastic lamellae, an increase in thickness of total aortic wall, tunica intima, subendothelial space and adventitial layer, and a disorganization in smooth muscular cells of the tunica media were observed in diabetic animals. The aorta lipid peroxidation (LPO) levels were significantly increased and the aorta glutathione (GSH) levels were significantly reduced in STZ diabetic rats. In diabetic rats administered vanadyl sulfate for 60 days, aorta LPO levels significantly decreased and the aorta GSH level significantly increased. In conclusion, in vivo treatment with vanadyl sulfate of diabetic rats prevented the morphological and biochemical changes observed in thoracic aorta of diabetic animals. Copyright © 2006 John Wiley & Sons, Ltd. [source] Effect of N -acetylcysteine on the early expression of inflammatory markers in the retina and plasma of diabetic ratsCLINICAL & EXPERIMENTAL OPHTHALMOLOGY, Issue 2 2009Gina Y Tsai MD Abstract Purpose:, The aim of this study is to investigate markers of inflammation and oxidative stress in an early model of diabetic retinopathy, correlate retinal and plasma results and evaluate the influence of treatment by N -acetylcysteine (NAC), a free radical scavenger. Methods:, Four groups were studied: control (C), streptozotocin (STZ)-induced diabetic rats (D), STZ rats following 8 weeks of NAC (DT), and control rats following 8 weeks of NAC (CT). Plasma levels of free 15-F2t-isoprostane (15-F-2t-IsoP), superoxide dismutase (SOD) and tumour necrosis factor-alpha (TNF-,) were obtained. Primary antibodies against macrophages (ED-1), microglia (Ox-42), pericytes (NG-2), endothelial and perivascular cells (IB-4), haem oxygenase 1 (HO-1) and vascular endothelial growth factor (VEGF) were used. Results:, Expression of NG-2 was robust in C, CT, DT, and mild in D. The intensity of IB-4 was higher in D and DT compared with the C and CT. Ox-42 and ED-1 expression was higher in the D than in the DT, C or CT. Expression of VEGF and HO-1 was non-specific across the four groups. Plasma levels of 15-F-2t-IsoP and TNF-, were higher in the D as compared with the C, CT and DT. SOD levels were lower in the D when compared with the C, CT and D. Conclusions:, Macrophage/microglia activation, pericyte loss and endothelial/perivascular cell changes occur early in the pathogenesis of DR. These changes are associated with an increase in plasma markers of oxidative stress and inflammation and are minimized by treatment with NAC. The results suggest that therapies that reduce free radicals will help minimize the early events in diabetic retinopathy in the STZ model. [source] Effects Of The New Hydroxy-3-Methylglutaryl Coenzyme A Reductase Inhibitor Fluvastatin On Anti-Oxidant Enzyme Activities And Renal Function In Streptozotocin-Induced Diabetic RatsCLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 10 2000Atsushi Kurusu SUMMARY 1. The effects of 11 week treatments with the new hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor fluvastatin on renal intrinsic anti-oxidant enzyme (AOE) activities and renal function were evaluated in streptozotocin (STZ)-induced diabetic rats. 2. Renal intrinsic AOE activities, creatinine clearance and urinary albumin excretion were examined in STZ-induced diabetic rats. The levels of total cholesterol (TC), triglyceride (TG) and phospholipid (PL) were also examined. 3. In general, renal AOE activities and function were lower in diabetic rats than in non-diabetic Sprague-Dawley rats. 4. Decreases in TC, TG and PL levels and urinary albumin excretion by the HMG-CoA reductase inhibitor fluvastatin improved renal function and produced a non-uniform alteration in renal AOE; only glutathione peroxidase (GSH-Px) activity increased significantly with fluvastatin treatment. 5. It appears that the improvement in renal function and albuminuria may be related to increases in GSH-Px activity, but there was no correlation between changes in renal function and changes in the activity of Mn-superoxide dismutase or catalase. [source] |