Indole Moiety (indole + moiety)

Distribution by Scientific Domains


Selected Abstracts


Synthesis of Fused Heteropolycyclic Systems Containing an Indole Moiety.

CHEMINFORM, Issue 40 2006
Hosam A. Saad
Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract, please click on HTML or PDF. [source]


Indole in DNA: Comparison of a Nucleosidic with a Non-Nucleosidic DNA Base Substitution

EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 3 2009
Janez Barbaric
Abstract The synthetic incorporation of indole as an artificial DNA base into oligonucleotides by two different structural approaches is described. For both types of modification, the indole moiety is attached through the C-3 position to the oligonucleotides. As a mimic of natural nucleosides, the indole nucleoside of ,-2,-deoxyribofuranoside (In) was synthesized. The corresponding In-modified duplexes were compared with duplexes that contained the indole group connected through (S)-3-amino-1,2-propanediol as an acyclic linker between the phosphodiester bridges of the oligonucleotides. This linker was tethered to the C-3 position of the indole heterocycle either directly (In,) or by a carbamate function (In,). The melting temperatures of the corresponding indole-modified DNA duplexes were measured and compared. Interestingly, not only the In, and In, modifications but also the natural-like In base surrogate destabilize the DNA duplex strongly. This result supports our approach to apply the acyclic glycol linker to incorporate aromatic molecules as artificial DNA base substitutions. The major advantage of acyclic glycol linkers [such as the applied (S)-3-amino-1,2-propanediol] is that the corresponding modifications are synthetically more easily and readily accessible, as it avoids the preparation of the nucleosidic bond and the separation and purification of the ,- and ,-anomers. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) [source]


Trimethyl[3-methyl-1-(o -tolenesulfonyl)indol-2-ylmethyl]ammonium iodide and benzyl[3-bromo-1-(phenylsulfonyl)indol-2-ylmethyl]tolylamine

ACTA CRYSTALLOGRAPHICA SECTION C, Issue 12 2002
P. R. Seshadri
The title compounds, C20H25N2O2S+·I,, (I), and C29H25BrN2O2S, (II), respectively, both crystallize in space group P. The pyrrole ring subtends an angle with the sulfonyl group of 33.6° in (I) and 21.5° in (II). The phenyl ring of the sulfonyl substituent makes a dihedral angle with the best plane of the indole moiety of 81.6° in (I) and 67.2° in (II). The lengthening or shortening of the C,N bond distances in both compounds is due to the electron-withdrawing character of the phenyl­sulfonyl group. The S atoms are in distorted tetrahedral configurations. The molecular structures are stabilized by C,H,O and C,H,I interactions in (I), and by C,H,O and C,H,N interactions in (II). [source]


Novel Fused Pyrrole Heterocyclic Ring Systems as Structure Analogs of LE 300: Synthesis and Pharmacological Evaluation as Serotonin 5-HT2A, Dopamine and Histamine H1 Receptor Ligands

ARCHIV DER PHARMAZIE, Issue 2 2010
Sherif A. F. Rostom
Abstract LE 300 represents a structurally novel type of antagonists acting preferentially at the dopamine D1/D5 receptors and the serotonin 5-HT2A receptor. This compound consists of a ten-membered central azecine ring fused to an indole ring on one side and a benzene moiety on the other side. To estimate the importance of the indole and / or phenyl moieties in this highly active benz-indolo-azecine, both rings were removed and replaced with a 1H -pyrrole counterpart. Accordingly, some new analogs of LE 300 namely, pyrrolo[2,3- g]indolizine, pyrrolo[3,2- a]quinolizine rings and their corresponding dimethylpyrrolo[2,3- d]azonine, and dimethylpyrrolo[2,3- d]azecine were synthesized to be evaluated for their activity at the 5-HT2A and dopamine D1, D2L, D4, D5 receptors in relation to LE 300. In addition, their activity at the H1 -histamine receptors was also determined. The results suggested that the rigid pyrrolo[2,3- g]indolizine 7 and pyrrolo[3,2- a]quinolizine 8 analogs lacked biological activity in the adopted three bioassays. However, their corresponding flexible pyrrolo[2,3- d]azonine 11 and pyrrolo[2,3- d]azecine 12 derivatives revealed weak partial agonistic activity and weak antagonistic potency at the serotonin 5-HT2A and histamine H1 receptors, respectively. Meanwhile, they showed no affinity to any of the four utilized dopamine receptors. Variation in ring size did not contribute to a significant influence on the three tested bioactivities. Removal of the hydrophobic moiety (phenyl ring) and replacement of the indole moiety with a 1H -pyrrole counterpart led to a dramatic alteration in the profile of activity of such azecine-type compounds. [source]