Ancient Lineage (ancient + lineage)

Distribution by Scientific Domains


Selected Abstracts


Early evolution of a homeobox gene: the parahox gene Gsx in the Cnidaria and the Bilateria

EVOLUTION AND DEVELOPMENT, Issue 4 2003
John R. Finnerty
Summary Homeobox transcription factors are commonly involved in developmental regulation in diverse eukaryotes, including plants, animals, and fungi. The origin of novel homeobox genes is thought to have contributed to many evolutionary innovations in animals. We perform a molecular phylogenetic analysis of cnox2, the best studied homeobox gene from the phylum Cnidaria, a very ancient lineage of animals. Among three competing hypotheses, our analysis decisively favors the hypothesis that cnox2 is orthologous to the gsx gene of Bilateria, thereby establishing the existence of this specific homeobox gene in the eumetazoan stem lineage, some 650,900 million years ago. We assayed the expression of gsx in the planula larva and polyp of the sea anemone Nematostella vectensis using in situ hybridization and reverse transcriptase polymerase chain reaction. The gsx ortholog of Nematostella, known as anthox2, is expressed at high levels in the posterior planula and the corresponding "head" region of the polyp. It cannot be detected in the anterior planula or the corresponding "foot" region of the polyp. We have attempted to reconstruct the evolution of gsx spatiotemporal expression in cnidarians and bilaterians using a phylogenetic framework. Because of the surprisingly high degree of variability in gsx expression within the Cnidaria, it is currently not possible to infer unambiguously the ancestral cnidarian condition or the ancestral eumetazoan condition for gsx expression. [source]


A Comparison of the Variability Spectra of Two Genomic Loci in a European Group of Individuals Reveals Fundamental Differences Pointing to Selection or a Population Bottleneck

ANNALS OF HUMAN GENETICS, Issue 3 2007
C. Schmegner
Summary Knowledge about the variability spectra of neutrally evolving sequences in a population is a prerequisite for the identification of genes, which may have been under positive selection during recent human evolution. Here, we report the results of a re-sequencing project of a presumably neutrally evolving chromosome 22 locus with a severely reduced recombination frequency in a group of 24 individuals of German origin. The comparison of these data with the results of a similar analysis of a chromosome 17 locus revealed striking differences, although the same group of individuals was used. For the chromosome 17 locus two well-separated groups of sequences, a positive value of Tajima's D and a TMRCA of 700 000 years were observed. In contrast, the sequences from the chromosome 22 locus were found to be relatively homogeneous, with no deep splits between subgroups; the obtained value for Tajima's D was negative and the TMRCA was only 260 000 years. These discrepancies may be explained by selection or demographic processes. Regarding demography, the most plausible explanation is the assumption of a severe bottleneck in the history of the European population: in the case of the chromosome 17 locus two ancient lineages passed this bottleneck; for the chromosome 22 locus it was only one ancient lineage. [source]


MODULARITY OF THE ANGIOSPERM FEMALE GAMETOPHYTE AND ITS BEARING ON THE EARLY EVOLUTION OF ENDOSPERM IN FLOWERING PLANTS

EVOLUTION, Issue 2 2003
William E. Friedman
Abstract The monosporic seven-celled/eight-nucleate Polygonumtype female gametophyte has long served as a focal point for discussion of the origin and subsequent evolution of the angiosperm female gametophyte. In Polygonumtype female gametophytes, two haploid female nuclei are incorporated into the central cell, and fusion of a sperm cell with the binucleate central cell produces a triploid endosperm with a complement of two maternal and one paternal genomes, characteristic of most angiosperms. We document the development of a four-celled/four-nucleate female gametophyte in Nuphar polysepala (Engelm.) and infer its presence in many other ancient lineages of angiosperms. The central cell of the female gametophyte in these taxa contains only one haploid nucleus; thus endosperm is diploid and has a ratio of one maternal to one paternal genome. Based on comparisons among flowering plants, we conclude that the angiosperm female gametophyte is constructed of modular developmental subunits. Each module is characterized by a common developmental pattern: (1) positioning of a single nucleus within a cytoplasmic domain (pole) of the female gametophyte; (2) two free-nuclear mitoses to yield four nuclei within that domain; and (3) partitioning of three uninucleate cells adjacent to the pole such that the fourth nucleus is confined to the central region of the female gametophyte (central cell). Within the basal angiosperm lineages Nymphaeales and Illiciales, female gametophytes are characterized by a single developmental module that produces a four-celled/four-nucleate structure with a haploid uninucleate central cell. A second pattern, typical of Amborella and the overwhelming majority of eumagnoliids, monocots, and eudicots, involves the early establishment of two developmental modules that produce a seven-celled/eight-nucleate female gametophyte with two haploid nuclei in the central cell. Comparative analysis of onto-genetic sequences suggests that the seven-celled female gametophyte (two modules) evolved by duplication and ectopic expression of an ancestral Nuphar- like developmental module within the chalazal domain of the female gametophyte. These analyses indicate that the first angiosperm female gametophytes were composed of a single developmental module, which upon double fertilization yielded a diploid endosperm. Early in angiosperm history this basic module was duplicated, and resulted in a seven-celled/eight-nucleate female gametophyte, which yielded a triploid endosperm with the characteristic 2:1 maternal to paternal genome ratio. [source]


A Comparison of the Variability Spectra of Two Genomic Loci in a European Group of Individuals Reveals Fundamental Differences Pointing to Selection or a Population Bottleneck

ANNALS OF HUMAN GENETICS, Issue 3 2007
C. Schmegner
Summary Knowledge about the variability spectra of neutrally evolving sequences in a population is a prerequisite for the identification of genes, which may have been under positive selection during recent human evolution. Here, we report the results of a re-sequencing project of a presumably neutrally evolving chromosome 22 locus with a severely reduced recombination frequency in a group of 24 individuals of German origin. The comparison of these data with the results of a similar analysis of a chromosome 17 locus revealed striking differences, although the same group of individuals was used. For the chromosome 17 locus two well-separated groups of sequences, a positive value of Tajima's D and a TMRCA of 700 000 years were observed. In contrast, the sequences from the chromosome 22 locus were found to be relatively homogeneous, with no deep splits between subgroups; the obtained value for Tajima's D was negative and the TMRCA was only 260 000 years. These discrepancies may be explained by selection or demographic processes. Regarding demography, the most plausible explanation is the assumption of a severe bottleneck in the history of the European population: in the case of the chromosome 17 locus two ancient lineages passed this bottleneck; for the chromosome 22 locus it was only one ancient lineage. [source]