Ancestral Size (ancestral + size)

Distribution by Scientific Domains


Selected Abstracts


Fossils provide better estimates of ancestral body size than do extant taxa in fishes

ACTA ZOOLOGICA, Issue 2009
James S. Albert
Abstract The use of fossils in studies of character evolution is an active area of research. Characters from fossils have been viewed as less informative or more subjective than comparable information from extant taxa. However, fossils are often the only known representatives of many higher taxa, including some of the earliest forms, and have been important in determining character polarity and filling morphological gaps. Here we evaluate the influence of fossils on the interpretation of character evolution by comparing estimates of ancestral body size in fishes (non-tetrapod craniates) from two large and previously unpublished datasets; a palaeontological dataset representing all principal clades from throughout the Phanerozoic, and a macroecological dataset for all 515 families of living (Recent) fishes. Ancestral size was estimated from phylogenetically based (i.e. parsimony) optimization methods. Ancestral size estimates obtained from analysis of extant fish families are five to eight times larger than estimates using fossil members of the same higher taxa. These disparities arise from differential survival of large-bodied members of early branching lineages, and are not statistical or taphonomic artefacts. Estimates of ancestral size obtained from a limited but judicious selection of fossil fish taxa are more accurate than estimates from a complete dataset of extant fishes. [source]


EVOLUTION OF SCAPULA SIZE AND SHAPE IN DIDELPHID MARSUPIALS (DIDELPHIMORPHIA: DIDELPHIDAE)

EVOLUTION, Issue 9 2009
Diego Astúa
The New World family Didelphidae, the basal lineage within marsupials, is commonly viewed as morphologically conservative, yet includes aquatic, terrestrial, scansorial, and arboreal species. Here, I quantitatively estimated the existing variability in size and shape of the Didelphidae scapula (1076 specimens from 56 species) using geometric morphometrics, and compared size and shape differences to evolutionary and ecologic distances. I found considerable variation in the scapula morphology, most of it related to size differences between species. This results in morphologic divergence between different locomotor habits in larger species (resulting from increased mechanical loads), but most smaller species present similarly shaped scapulae. The only exceptions are the water opossum and the short-tailed opossums, and the functional explanations for these differences remain unclear. Scapula size and shape were mapped onto a molecular phylogeny for 32 selected taxa and ancestral size and shapes were reconstructed using squared-changed parsimony. Results indicate that the Didelphidae evolved from a medium- to small-sized ancestor with a generalized scapula, slightly more similar to arboreal ones, but strikingly different from big-bodied present arboreal species, suggesting that the ancestral Didelphidae was a small scansorial animal with no particular adaptations for arboreal or terrestrial habits, and these specializations evolved only in larger-bodied clades. [source]


A shrew-sized origin for primates

AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue S39 2004
Daniel L. Gebo
Abstract The origin of primates has had a long history of discussion and debate, with few ever considering the impact of the original body weight on subsequent primate adaptive radiations. Here, I attempt to reconstruct early primate evolution by considering the initial size of primates as well as the critical functional-adaptive events that had to occur prior to the early Eocene. Microcebus is often viewed as a living model, and thus 40,65 g might represent a practical ancestral weight for the origin of primates. I consider a smaller original body weight, likely 10,15 g in actual size, and I address the biological implications for shrew-sized primates by comparing the behavioral ecology of mouse lemurs, our smallest living primates, to another tiny-sized mammalian group, the shrews (Family Soricidae). Several behavioral and ecological characteristics are shared by shrews and mouse lemurs, and several mammalian trends are evident with decreased size. I suggest that a shrew-sized ancestral primate would have had high metabolic, reproductive, and predation rates, relatively low population densities, and a dispersed and solitary existence with a promiscuous mating system. Although small mammals like shrews provide insights concerning the ancestral size of primates, primate origins have always been tied to arboreality. I assess other potential arboreal models such as Ptilocercus and Caluromys. By combining all of this information, I try to sequence the events in a functional-adaptive series that had to occur before the early Eocene primate radiations. I suggest that all of these important adaptive events had to occur at a small body size below 50 g. Yrbk Phys Anthropol 47:40,62, 2004. © 2004 Wiley-Liss, Inc. [source]