Home About us Contact | |||
Increasing Dominance (increasing + dominance)
Selected AbstractsAnthropogenic disturbance affects the structure of bacterial communitiesENVIRONMENTAL MICROBIOLOGY, Issue 3 2010Duane Ager Summary Patterns of taxa abundance distributions are the result of the combined effects of historical and biological processes and as such are central to ecology. It is accepted that a taxa abundance distribution for a given community of animals or plants following a perturbation will typically change in structure from one of high evenness to increasing dominance. Subsequently, such changes in evenness have been used as indicators of biological integrity and environmental assessment. Here, using replicated experimental treehole microcosms perturbed with different concentrations of the pollutant pentachlorophenol, we investigated whether changes in bacterial community structure would reflect the effects of anthropogenic stress in a similar manner to larger organisms. Community structure was visualized using rank,abundance plots fitted with linear regression models. The slopes of the regression models were used as a descriptive statistic of changes in evenness over time. Our findings showed that bacterial community structure reflected the impact and the recovery from an anthropogenic disturbance. In addition, the intensity of impact and the rate of recovery to pre-perturbation structure were dose-dependent. These properties of bacterial community structures may potentially provide a metric for environmental assessment and regulation. [source] Sequestration and turnover of plant- and microbially derived sugars in a temperate grassland soil during 7 years exposed to elevated atmospheric pCO2GLOBAL CHANGE BIOLOGY, Issue 2 2007MICHAEL BOCK Abstract Temperate grasslands contribute about 20% to the global terrestrial carbon (C) budget with sugars contributing 10,50% to this soil C pool. Whether the observed increase of the atmospheric CO2 concentration (pCO2) leads to additional C sequestration into these ecosystems or enhanced mineralization of soil organic matter (SOM) is still unclear. Therefore, the aim of the presented study was to investigate the impact of elevated atmospheric pCO2 on C sequestration and turnover of plant- (arabinose and xylose) and microbially derived (fucose, rhamnose, galactose, mannose) sugars in soil, representing a labile SOM pool. The study was carried out at the Swiss Free Air Carbon Dioxide Enrichment (FACE) experiment near Zurich. For 7 years, Lolium perenne swards were exposed to ambient and elevated pCO2 (36 and 60 Pa, respectively). The additional CO2 in the FACE plots was depleted in 13C compared with ambient plots, so that ,new' (<7 years) C inputs could be determined by means of compound-specific stable isotope analysis (13C : 12C). Samples were fractionated into clay, silt, fine sand and coarse sand, which yielded relatively stable and labile SOM pools with different turnover rates. Total sugar sequestration into bulk soil after 7 years of exposure to elevated pCO2 was about 28% compared with the control plots. In both ambient and elevated plots, total sugar concentrations in particle size fractions increased in the order sand Dual isotope and isotopomer ratios of N2O emitted from a temperate grassland soil after fertiliser applicationRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 22 2003R. Bol The N2O and N2 fluxes emitted from a temperate UK grassland soil after fertiliser application (equivalent to 25 and 75,kg N ha,1) were simultaneously measured, using a new automated soil incubation system, which replaces soil atmosphere (N2 dominated) with a He+O2 mixture. Dual isotope and isotopomer ratios of the emitted N2O were also determined. Total N2O and N2 fluxes were significantly lower (P,<,0.001) in the control (0,kg N) than in the 25 and 75,kg N treatments. The total N2O flux was significantly higher (P,<,0.001) in the 75,kg N than in the 25,kg N treatment. The general patterns of N2O and N2 fluxes were similar for both fertiliser treatments. The total gaseous N loss in the control treatment was nearly all N2, whereas in the fertiliser treatment more N2O than N2 was emitted from the soil. The ratio N2O/N2 fluxes as measured during the experiment suggested three phases in N2O production, in phase 1 nitrification > denitrification, in phase 2 denitrification,>,nitrification, and in phase 3 denitrification (and total denitrification),,,nitrification. Dual ,15N and ,18O isotope and isotopomer (,15N, and ,15N,) value ratios of emitted N2O also pointed towards an increasing dominance of the production of N2O by denitrification and total denitrification. The site preference value from the soil-emitted N2O was lower than the troposphere value. This confirmed that the enhanced troposphere N2O site preference could result from back injection of N2O from the stratosphere. The measurements of N2O/N2 flux ratio and the isotopic content of emitted N2O pointed, independently, to similar temporal trends in N2O production processes after fertiliser application to grassland soil. This confirmed that both measurements are suitable diagnostic tools to study the N2O production process in soils. Copyright © 2003 John Wiley & Sons, Ltd. [source] "Squatting is Still Legal, Necessary and Free": A Brief Intervention in the Corporate CityANTIPODE, Issue 1 2002Paul Chatterton Squatting is a solution to homelessness, empty properties and speculation. It provides homes for those who can't get public housing and who can't afford extortionate rents. Squatting creates space for much-needed community projects. Squatting means taking control instead of being pushed around by bureaucrats and property owners. Squatting is still legal, necessary and free.(Advisory Service for Squatters 1996:1) What follows is an account of a brief intervention in the contemporary urban landscape in an English city, Newcastle upon Tyne. It is an account of a group of people who squatted a building as a response to the increasing dominance of corporate organisations and the declining accountability of local authorities in cities. [source] Space,time patterns of co-variation of biodiversity and primary production in phytoplankton guilds of coastal marine environmentsAQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 6 2003Maria Rosaria Vadrucci Abstract 1.The relevance of biodiversity to ecosystem processes is a major topic in ecology. Here, we analyse the relationship between biodiversity and productivity of the nano- and micro-phytoplankton guilds in coastal marine ecosystems. 2.The patterns of variation of species richness, diversity and primary productivity (as 14C assimilation) were studied in two marine areas: a eutrophic,mesotrophic area beside the River Po delta (northern Adriatic) and an oligotrophic area around the Salento peninsula (southern Adriatic,Ionian). The study was carried out at 23 sites in the northern area and at 45 sites in the southern area. Sites were arranged on expected spatial and temporal gradients of primary productivity variation, according to distance from the coast, optical depths and seasonal period. 3.167 taxa were identified in the northern area and 153 taxa in the southern area. In both areas, the taxonomic composition of the nano- and micro-phytoplankton guilds exhibited greater temporal than spatial variation. The latter was much higher in the southern area than in the northern area (average dissimilarity between stations being 70.7±0.8% and 44.7±4.2% respectively). 4.Primary productivity varied in space and time on the gradients considered. Phytoplankton species richness and diversity exhibited significant patterns of variation in space and time; overall, these were inversely related to the primary productivity patterns in the northern area, whereas they were directly related in the southern area. 5.The small individual size and the high turnover rate of phytoplankton are likely to underlie the observed relationships, which emphasized a threshold response to nutrient enrichment in agreement with the ,paradox of enrichment'. Under resource enrichment conditions, the high turnover of producers leads to hierarchical partitioning of the available resources with an increasing dominance of a few species. Therefore, the relationship observed here seems likely to be explained by the complementarity hypothesis. Copyright © 2003 John Wiley & Sons, Ltd. [source]
| |