Increasing Dietary Lipid Level (increasing + dietary_lipid_level)

Distribution by Scientific Domains


Selected Abstracts


Effects of dietary protein to energy ratios on growth and body composition of juvenile Chinese sucker, Myxocyprinus asiaticus

AQUACULTURE NUTRITION, Issue 2 2010
Y.C. YUAN
Abstract A growth experiment was conducted to investigate effect of dietary protein to energy ratios on growth and body composition of juvenile Myxocyprinus asiaticus (initial mean weight: 10.04 0.53 g, mean SD). Nine practical diets were formulated to contain three protein levels (340, 390 and 440 g kg,1), each with three lipid levels (60, 100 and 140 g kg,1), in order to produce a range of P/E ratios (from 22.4 to 32.8 mg protein kJ,1). Each diet was randomly assigned to triplicate groups of 20 fish in 400-L indoors flow-through circular fibre glass tanks provided with sand-filtered aerated freshwater. The results showed that the growth was significantly affected by dietary P/E ratio (P < 0.05). Fish fed the diets with 440 g kg,1 protein (100 and 140 g kg,1 lipid, P/E ratio of 31.43 and 29.22 mg protein kJ,1) had the highest specific growth rates (SGR) (2.16 and 2.27% day,1, respectively). However, fish fed the diet with 390 g kg,1 protein and 140 g kg,1 lipid showed comparable growth (2.01% day,1), and had higher protein efficiency ratio (PER), protein productive value (PPV) and energy retention (ER) than other groups (P < 0.05). No significant differences in survival were found among dietary treatments. Carcass lipid content was positively correlated with dietary lipid level, but irrespective of protein level and inversely correlated with carcass moisture content. Carcass protein contents increased with increasing dietary lipid at each protein level. The white muscle and liver composition showed that lipid increased with increasing dietary lipid level (P < 0.05). Dietary protein concentrations had significant effect on condition factor (CF), hepatosomatic index (HSI) and viscerosomatic index (VSI) (P < 0.05). However, dietary lipid concentrations had no significant effect on CF, HSI (P > 0.05). Based on these observations, 440 g kg,1 protein with lipid from 100 to 140 g kg,1 (P/E ratio of 29.22 to 31.43 mg protein kJ,1) seemed to meet minimum requirement for optimal growth and feed utilization, and lipid could cause protein-sparing effect in diets for juvenile Chinese sucker. [source]


Growth and body composition of juvenile white shrimp, Litopenaeus vannamei, fed different ratios of dietary protein to energy

AQUACULTURE NUTRITION, Issue 6 2008
Y. HU
Abstract A 10-week feeding experiment was conducted to evaluate the effect of different protein to energy ratios on growth and body composition of juvenile Litopenaeus vannamei (initial average weight of 0.09 0.002 g, mean SE). Twelve practical test diets were formulated to contain four protein levels (300, 340, 380 and 420 g kg,1) and three lipid levels (50, 75 and 100 g kg,1). Each diet was randomly fed to triplicate groups of 30 shrimps per tank (260 L). The water temperature was 28.5 2 C and the salinity was 28 1 g L,1 during the experimental period. The results showed that the growth was significantly (P < 0.05) affected by dietary treatments. Shrimps fed the diets containing 300 g kg,1 protein showed the poorest growth. However, shrimp fed the 75 g kg,1 lipid diets had only slightly higher growth than that fed 50 g kg,1 lipid diets at the same dietary protein level, and even a little decline in growth with the further increase of dietary lipid to 100 g kg,1. Shrimp fed the diet with 420 g kg,1protein and 75 g kg,1 lipid had the highest specific growth rate. However, shrimp fed the diet with 340 g kg,1 protein and 75 g kg,1 lipid showed comparable growth, and had the highest protein efficiency ratio, energy retention and feed efficiency ratio among dietary treatments. Triglycerides and total cholesterol in the serum of shrimp increased with increasing dietary lipid level at the same dietary protein level. Body lipid and energy increased with increasing dietary lipid level irrespective of dietary protein. Results of the present study showed that the diet containing 340 g kg,1 protein and 75 g kg,1 lipid with digestible protein/digestible energy of 21.1 mg kJ,1 is optimum for L. vannamei, and the increase of dietary lipid level has not efficient protein-sparing effect. [source]


Effect of dietary lipid level on the growth performance, feed utilization, body composition and blood chemistry of juvenile starry flounder (Platichthys stellatus)

AQUACULTURE RESEARCH, Issue 10 2010
Liyun Ding
Abstract A study was conducted to determine the effect of dietary lipid level on the growth performance, feed utilization, body composition and blood chemistry of juvenile starry flounder. Five isonitrogenous diets with increasing dietary lipid levels (6%, 10%, 14%, 18% and 22% dry material) were each fed to triplicate groups of starry flounder (29.9 g) for 8 weeks. Weight gain (WG) and specific growth rate of fish fed the 6% lipid diet were significantly lower than the other groups, while there was no significant difference in fish fed the 10%, 14%, 18% and 22% lipid diets. Body lipid content increased with increasing dietary lipid levels. The moisture content of the whole body was negatively correlated to the dietary lipid level. The dietary lipid level also affected the lipid content of the dorsal muscle positively. Liver lipid content increased as the dietary lipid level increased from 6% to 14% and then decreased. With increasing dietary lipid level, the nitrogen retention achieved the highest value when the fish were fed the 14% lipid diet, but there were no significant differences with the 10% and 22% groups. The plasma total protein content first showed an increasing and then a decreasing trend with increasing dietary lipid level, and it was significantly higher in the 14% lipid group than other groups. Based on the WG response using the broken-line model, the optimum dietary lipid level for juvenile starry flounder was estimated to be 10.62% in the experiment. [source]


Effects of Dietary Lipids on Growth and Feed Utilization of Jade Perch, Scortum barcoo

JOURNAL OF THE WORLD AQUACULTURE SOCIETY, Issue 2 2009
Li Ping Song
To examine the effects of dietary lipids on the growth and feed utilization of jade perch juveniles, Scortum barcoo, diets containing 36.3% crude protein supplemented with increasing lipid levels (6, 9, 12, and 15% of the dry matter) were used to feed triplicate groups of 30 fish for 60 d. At the end of the experiment, more than 95% fish survived well from all diet groups (P > 0.05). Measurements on the weight gains and the daily specific growth rates indicated that fish fed with diets of 12 and 15% lipids exhibited higher growth rates (P < 0.05); evaluations for the feed conversion ratio and the protein efficiency ratio indicated that fish fed with 12 and 15% lipid diets used their feed and dietary proteins more efficiently (P < 0.05). The muscle lipid and dry matter contents increased dramatically in fish fed with higher dietary lipid levels (P < 0.05). The highest lipid contents were obtained from fish in the 15% lipid diet group and the highest amount of dry matters from the 12% lipid diet group. On the other hand, protein contents in fish muscles declined with increasing dietary lipid levels (P < 0.05), and the lowest values were shown in the 15% lipid diet group. Ash contents showed no significant differences from muscles of fish fed with four different diets (P > 0.05). Together, increasing lipid levels in fish diets was effective to improve fish growth, feed efficiency, and protein utilization. [source]


Effect of dietary lipid level on the growth performance, feed utilization, body composition and blood chemistry of juvenile starry flounder (Platichthys stellatus)

AQUACULTURE RESEARCH, Issue 10 2010
Liyun Ding
Abstract A study was conducted to determine the effect of dietary lipid level on the growth performance, feed utilization, body composition and blood chemistry of juvenile starry flounder. Five isonitrogenous diets with increasing dietary lipid levels (6%, 10%, 14%, 18% and 22% dry material) were each fed to triplicate groups of starry flounder (29.9 g) for 8 weeks. Weight gain (WG) and specific growth rate of fish fed the 6% lipid diet were significantly lower than the other groups, while there was no significant difference in fish fed the 10%, 14%, 18% and 22% lipid diets. Body lipid content increased with increasing dietary lipid levels. The moisture content of the whole body was negatively correlated to the dietary lipid level. The dietary lipid level also affected the lipid content of the dorsal muscle positively. Liver lipid content increased as the dietary lipid level increased from 6% to 14% and then decreased. With increasing dietary lipid level, the nitrogen retention achieved the highest value when the fish were fed the 14% lipid diet, but there were no significant differences with the 10% and 22% groups. The plasma total protein content first showed an increasing and then a decreasing trend with increasing dietary lipid level, and it was significantly higher in the 14% lipid group than other groups. Based on the WG response using the broken-line model, the optimum dietary lipid level for juvenile starry flounder was estimated to be 10.62% in the experiment. [source]