Increased Excitability (increased + excitability)

Distribution by Scientific Domains


Selected Abstracts


Hippocampal granule cells opt for early retirement

HIPPOCAMPUS, Issue 10 2010
C.B. Alme
Abstract Increased excitability and plasticity of adult-generated hippocampal granule cells during a critical period suggests that they may "orthogonalize" memories according to time. One version of this "temporal tag" hypothesis suggests that young granule cells are particularly responsive during a specific time period after their genesis, allowing them to play a significant role in sculpting CA3 representations, after which they become much less responsive to any input. An alternative possibility is that the granule cells active during their window of increased plasticity, and excitability become selectively tuned to events that occurred during that time and participate in later reinstatement of those experiences, to the exclusion of other cells. To discriminate between these possibilities, rats were exposed to different environments at different times over many weeks, and cell activation was subsequently assessed during a single session in which all environments were revisited. Dispersing the initial experiences in time did not lead to the increase in total recruitment at reinstatement time predicted by the selective tuning hypothesis. The data indicate that, during a given time frame, only a very small number of granule cells participate in many experiences, with most not participating significantly in any. Based on these and previous data, the small excitable population of granule cells probably correspond to the most recently generated cells. It appears that, rather than contributing to the recollection of long past events, most granule cells, possibly 90,95%, are effectively "retired." If granule cells indeed sculpt CA3 representations (which remains to be shown), then a possible consequence of having a new set of granule cells participate when old memories are reinstated is that new representations of these experiences might be generated in CA3. Whatever the case, the present data may be interpreted to undermine the standard "orthogonalizer" theory of the role of the dentate gyrus in memory. © 2010 Wiley-Liss, Inc. [source]


Contribution of neuroinflammation in burning mouth syndrome: indications from benzodiazepine use

DERMATOLOGIC THERAPY, Issue 2008
Fabrizio Guarneri
ABSTRACT: Characterized by burning and painful oral sensations in absence of clinically significant mucosal abnormalities, the burning mouth syndrome is, despite numerous researches made, basically idiopathic and, consequently, difficult to treat effectively. Therapy with tricyclic antidepressants and benzodiazepines has been proposed, although the exact pathomechanism is not clear. The objective of this study is to define the possible reasons for the efficacy of benzodiazepines in the treatment of the burning mouth syndrome. Starting from the report of eight cases successfully treated with prazepam, the present authors examined the clinical features and the evidence from literature that support the possibility of a role of neuroinflammation in the pathogenesis of the burning mouth syndrome. Available data suggest that the nervous system could be crucial in the pathogenesis of the syndrome (altered perception of pain, disturbance of neural transmission, increased excitability, negative involvement of trigeminal-vascular system), and the present authors' experience lets them suppose a role for neuroinflammation. This hypothesis could also explain the positive response to benzodiazepines in some patients. The important role of neuroinflammation in dermatologic and oral diseases has been only recently investigated and acknowledged. Further studies on the connection between neuroinflammation and burning mouth syndrome could open interesting perspectives in the understanding and management of this difficult clinical condition. [source]


Induction of prolonged tenderness in patients with tension-type headache by means of a new experimental model of myofascial pain

EUROPEAN JOURNAL OF NEUROLOGY, Issue 3 2003
H. Mørk
Tenderness is the most prominent abnormal finding in patients with tension-type headache (TTH). Recently we developed a model of myofascial tenderness using intramuscular infusion of a combination of bradykinin, serotonin, histamine and prostaglandin E2. We aimed to examine tenderness after this combination in patients with episodic TTH (ETTH). Fifteen patients and 15 healthy controls completed the study. Participants received the combination into the non-dominant trapezius muscle in a randomized, double-blinded and placebo-controlled design. Local tenderness and stimulus,response functions, mechanical pain thresholds (PPDT) in the temporal region and on the finger, and total tenderness score (TTS) were recorded. A local, prolonged, and mild to moderate tenderness was reported both in patients (P = 0.001) and in controls (P = 0.001) after the combination compared with the placebo. The response to the combination tended to be increased in patients. The stimulus,response function was leftward shifted after the combination, compared with baseline in both groups. No changes in PPDT or TTS were found after the infusions, whereas baseline PPDTs were decreased in ETTH compared with controls (PPDTfinger: P = 0.033; PPDTtemporal: P = 0.015). Intramuscular infusion of a combination of endogenous substances induced prolonged tenderness in both patients with episodic TTH and healthy subjects. The present results suggest an increased excitability of peripheral muscle afferents in TTH. [source]


Influence of Colors on Habituation of Visual Evoked Potentials in Patients With Migraine With Aura and in Healthy Volunteers

HEADACHE, Issue 1 2000
J. Áfra MD
Objective., To investigate whether colored glasses influence the habituation of visual evoked potentials. Background., We have previously shown that during pattern-reversal stimulations lasting 2 minutes the amplitude of the visual evoked potential increases in migraine with and without aura between attacks, whereas it decreases in healthy volunteers. Red light was found to increase visually evoked EEG fast activity only in children with migraine with aura. Wearing rose-tinted glasses for 4 months decreased attack frequency in parallel with a reduction of the visually evoked EEG fast activity. Methods., We compared the change in amplitude of the visual evoked potential using five different tinted glasses in 12 patients with migraine with aura and in 10 healthy volunteers. During continuous stimulation at 3.1 Hz, five blocks of 50 responses were sequentially averaged using red, yellow, green, blue, and grey glasses and without glasses in a random order and analyzed in terms of latencies and N1-P1 amplitudes. Amplitude changes were calculated for each block by comparison with the first block in every condition and analyzed statistically using Zerbe's method. Results., In healthy volunteers, the visual evoked potential amplitude increased with red glasses compared to without glasses (P=.05) or with green glasses (P=.03). In patients with migraine with aura, no significant difference was detected using colored glasses. Our findings in healthy volunteers are in line with earlier reports of increased excitability of the human visual cortex when exposed to red light. The lack of such a pattern in patients with migraine with aura suggests that the visual cortex is interictally hypoexcitable rather than hyperexcitable, which is consistent with studies of transcranial magnetic stimulation. [source]


Long-lasting increased excitability differs in dentate gyrus vs.

HIPPOCAMPUS, Issue 3 2002
CA1 in freely moving chronic epileptic rats after electrically induced status epilepticus
Abstract A paired-pulse (PP) stimulation protocol was used to examine changes in field potentials (fEPSPs), locally evoked in CA1 via Schaffer/commissural fiber stimulation and in the dentate gyrus (DG) through angular bundle stimulation, in freely moving epileptic rats. This epilepsy model is characterized by recurrent spontaneous seizures that occur after a latent period of 1,2 weeks following an electrically induced status epilepticus (SE). In the control period, i.e., before induction of SE, the PP stimulation protocol given at the appropriate intensity evoked fEPSPs with a pronounced paired-pulse depression (PPD). In the acute period, immediately after SE, the fEPSPs in the CA1 and DG areas were generally depressed. During the latent period in the CA1 stratum radiatum, the negative fEPSP was followed by a large positive potential that remained for the rest of the recording period. CA1 PPD, observed during the control period, was changed to paired-pulse facilitation (PPF) that remained for the rest of the recording period. Also during the latent period, a broad late component appeared in DG fEPSPs. The initial decrease in PPD was partly restored in the following weeks. Timm staining at different time points after SE showed an increase of mossy-fiber sprouting in the inner molecular layer within 6 days, which was robust within 6 weeks. We noted Timm granules positioned on parvalbumin immunoreactive neurons in the granule-cell layer of rats that had survived SE, suggesting that restoration of PPD could be partly due to reinnervation of a population of GABAergic neurons. The broad late component of DG fEPSPs, which was sensitive to the NMDA receptor antagonist ketamine, was still present for at least 6 weeks into the chronic epileptic phase, indicating lasting increased excitability. These observed changes indicate a lasting increased excitability in CA1 and DG networks that could play a role in the recurrence of spontaneous seizures. Hippocampus 2002;12:311,324. © 2002 Wiley-Liss, Inc. [source]


Painful neuropathy alters the effect of gabapentin on sensory neuron excitability in rats

ACTA ANAESTHESIOLOGICA SCANDINAVICA, Issue 4 2004
A. Kanai
Background:, Pain following peripheral nerve injury is associated with increased excitability of sensory neurons. Gabapentin (GBP), a novel anticonvulsant with an uncertain mechanism of action, is an effective treatment for neuropathic pain. We therefore investigated the effect of GBP on dorsal root ganglion (DRG) neurons from normal rats and those with painful peripheral nerve injury. Methods:, Dorsal root ganglions were excised from rats with neuropathic pain behaviour following chronic constriction injury (CCI) of the sciatic nerve, and from normal rats. Intercellular recordings were made from myelinated sensory neuron somata using a microelectrode technique from DRGs bathed in artificial CSF with or without GBP (100 µM). Results:, Compared with normal neurons, injury decreased the refractory interval (RI) for repeat action potential (AP) generation increased the number of APs during sustained depolariza- tion, and shortened the after hyperpolarization following an AP. In normal neurons, GBP decreased the RI and increased the AP number during sustained depolarization. In an opposite fashion, the result of GBP application to injured neurons was a decreased number of APs during depolarization and no change in RI. In injured neurons only, GBP increased the time-to-peak for AP depolarization. Conclusions:, Nerve injury by CCI is associated with increased sensory neuron excitability, associated with a decreased AHP. In normal peripheral sensory neurons, GBP has pro-excitatory effects, whereas GBP decreases excitability in injured neurons, possibly on the basis of altered sodium channel function. [source]


The Comparative Effects of Drive and Test Stimulus Intensity on Myocardial Excitability and Vulnerability

PACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 1 2000
HOWARD S. FRIEDMAN
The number and intensity of stimuli that set basic cycle length in cardiac electrophysiological studies can influence the electrical properties assessed by extrastimuli. The relative contribution of drive (S1) and test (S2) stimulus intensity in defining myocardial excitability and vulnerability has not been reported. The purpose of this investigation was to assess this interaction and to determine whether a trial and ventricular findings differed. The effects of S1 and S2 intensity on a trial and ventricular stimulus-intensity-refractory-period curves were determined in open-chest dogs: comparisons were made between curves with S1 intensity varied between diastolic threshold (DT) and 10 mA and S2 intensity maintained at DT and those with S, intensity maintained at DT and S2 intensity varied between DT and 10 mA. S1 -S2 was held constant and S1 -S2 varied. The effects of different stimulation sites, cycle length, number of stimulations, and neural blockade were assessed. S3 intensity amplification shifted atrial stimulus-intensity-refractory period curves in the direction of increased excitability and vulnerability; the changes were, more pronounced than those obtained by modulating S2 intensity. The changes produced by increasing S1 intensity were evident at different cycle lengths and were enhanced by an increased number of stimulations, but were not evident when S1 and S2 were delivered at different atrial sites. Although beta-blockade attenuated the effects of increasing S1 intensity somewhat, the addition of cholinergic blockade virtually abolished it. Ventricular refractoriness was also changed by modulation of S1 intensity, but the changes were less striking. In the atrium, modulation of S1 intensity has greater effects of stimulus-intensity-refractory-period relations than modulation ofS2 intensity; in the ventricle, the converse is true. [source]


Tests for presynaptic modulation of corticospinal terminals from peripheral afferents and pyramidal tract in the macaque

THE JOURNAL OF PHYSIOLOGY, Issue 1 2006
A. Jackson
The efficacy of sensory input to the spinal cord can be modulated presynaptically during voluntary movement by mechanisms that depolarize afferent terminals and reduce transmitter release. It remains unclear whether similar influences are exerted on the terminals of descending fibres in the corticospinal pathway of Old World primates and man. We investigated two signatures of presynaptic inhibition of the macaque corticospinal pathway following stimulation of the peripheral nerves of the arm (median, radial and ulnar) and the pyramidal tract: (1) increased excitability of corticospinal axon terminals as revealed by changes in antidromically evoked cortical potentials, and (2) changes in the size of the corticospinal monosynaptic field potential in the spinal cord. Conditioning stimulation of the pyramidal tract increased both the terminal excitability and monosynaptic fields with similar time courses. Excitability was maximal between 7.5 and 10 ms following stimulation and returned to baseline within 40 ms. Conditioning stimulation of peripheral nerves produced no statistically significant effect in either measure. We conclude that peripheral afferents do not exert a presynaptic influence on the corticospinal pathway, and that descending volleys may produce autogenic terminal depolarization that is correlated with enhanced transmitter release. Presynaptic inhibition of afferent terminals by descending pathways and the absence of a reciprocal influence of peripheral input on corticospinal efficacy would help to preserve the fidelity of motor commands during centrally initiated movement. [source]


A modelling study of locomotion-induced hyperpolarization of voltage threshold in cat lumbar motoneurones

THE JOURNAL OF PHYSIOLOGY, Issue 2 2002
Yue Dai
During fictive locomotion the excitability of adult cat lumbar motoneurones is increased by a reduction (a mean hyperpolarization of ,6.0 mV) of voltage threshold (Vth) for action potential (AP) initiation that is accompanied by only small changes in AP height and width. Further examination of the experimental data in the present study confirms that Vth lowering is present to a similar degree in both the hyperpolarized and depolarized portions of the locomotor step cycle. This indicates that Vth reduction is a modulation of motoneurone membrane currents throughout the locomotor state rather than being related to the phasic synaptic input within the locomotor cycle. Potential ionic mechanisms of this locomotor-state-dependent increase in excitability were examined using three five-compartment models of the motoneurone innervating slow, fast fatigue resistant and fast fatigable muscle fibres. Passive and active membrane conductances were set to produce input resistance, rheobase, afterhyperpolarization (AHP) and membrane time constant values similar to those measured in adult cat motoneurones in non-locomoting conditions. The parameters of 10 membrane conductances were then individually altered in an attempt to replicate the hyperpolarization of Vth that occurs in decerebrate cats during fictive locomotion. The goal was to find conductance changes that could produce a greater than 3 mV hyperpolarization of Vth with only small changes in AP height (< 3 mV) and width (< 1.2 ms). Vth reduction without large changes in AP shape could be produced either by increasing fast sodium current or by reducing delayed rectifier potassium current. The most effective Vth reductions were achieved by either increasing the conductance of fast sodium channels or by hyperpolarizing the voltage dependency of their activation. These changes were particularly effective when localized to the initial segment. Reducing the conductance of delayed rectifier channels or depolarizing their activation produced similar but smaller changes in Vth. Changes in current underlying the AHP, the persistent Na+ current, three Ca2+ currents, the ,h' mixed cation current, the ,A' potassium current and the leak current were either ineffective in reducing Vth or also produced gross changes in the AP. It is suggested that the increased excitability of motoneurones during locomotion could be readily accomplished by hyperpolarizing the voltage dependency of fast sodium channels in the axon hillock by a hitherto unknown neuromodulatory action. [source]


Spinal tumor necrosis factor , neutralization reduces peripheral inflammation and hyperalgesia and suppresses autonomic responses in experimental arthritis: A role for spinal tumor necrosis factor , during induction and maintenance of peripheral inflammation

ARTHRITIS & RHEUMATISM, Issue 5 2010
Michael Karl Boettger
Objective In addition to the sensitization of pain fibers in inflamed tissues, the increased excitability of the spinal cord is an important mechanism of inflammatory pain. Furthermore, spinal neuronal excitability has been suggested to play a role in modulating peripheral inflammation. This study was undertaken to test the hypothesis that spinal actions of the proinflammatory cytokine tumor necrosis factor , (TNF,) add significantly to both hyperalgesia and maintenance of peripheral inflammation. Methods Rats with antigen-induced arthritis (AIA) were treated intrathecally with the TNF,-neutralizing compound etanercept continuously during the complete time course of AIA, which was 3 days for the acute phase and 21 days for the chronic phase. During this time, inflammation and pain-related behavior were monitored. Since a role for autonomic control of inflammation was proposed, measures from heart rate time series were obtained in the acute phase. Findings were compared with those in vehicle-treated animals and in animals receiving etanercept intraperitoneally. Results Spinally administered etanercept acutely reduced pain-related behavior, attenuated both the development and the maintenance of inflammation, and was superior to systemic administration. Parameters indicating autonomic modulation showed a shift toward a sympathetically dominated state in vehicle-treated animals, which was prevented by intrathecal etanercept. Conclusion Our findings indicate that spinal TNF, plays an important role in both pain signaling and modulation of peripheral inflammation. Thus, neutralizing this cytokine at the spinal site not only represents a putative therapeutic option for different pain syndromes, but may be directly used to attenuate peripheral inflammation. [source]