Incubation Stage (incubation + stage)

Distribution by Scientific Domains


Selected Abstracts


The influence of parental behavior on vulnerability to nest predation in tropical thrushes of an Andean cloud forest

JOURNAL OF AVIAN BIOLOGY, Issue 6 2009
Konrad Halupka
The Skutch hypothesis predicts that parental activity around the nest may attract the attention of predators and thus, in the tropics where predation pressure may be high, selection favors reduced parental activity. This hypothesis has been questioned by studies demonstrating that parents can decrease the risk of nest predation through nest defense. The link between parental activity and predation risk may be further confounded by nest site characteristics. We examined the effects of parental behavior and nest site on clutch survival in two sympatric tropical thrushes (Myadestes ralloides and Turdus leucops). We compared survival rates of clutches in three treatments: 1) natural nests at the incubation stage, 2) unattended nests (un-manipulated nests of the same species, with clutches unattended by parents), and 3) exposed clutches (eggs exposed in unconcealed positions, unprotected by the nest). Parental activity had a positive effect on clutch survival, which was revealed by significantly higher survival rate of clutches in attended nests compared to unattended nests. The effect of nest site was less clear: clutches in unattended natural nests survived better than clutches in exposed sites selected by humans, but results were insignificant. We propose that parent birds can exclude a group of opportunistic predators, that are able to destroy unattended clutches. Nest site characteristics may be less important in determining clutch survival in the tropics, where predator guilds are more diverse, making completely safe sites difficult to find. Our results challenge Skutch's hypothesis and point to the need for more data from tropical latitudes. [source]


Field metabolic rates of black-browed albatrosses Thalassarche melanophrys during the incubation stage

JOURNAL OF AVIAN BIOLOGY, Issue 6 2004
Scott A. Shaffer
Field metabolic rates (FMR) and activity patterns of black-browed albatrosses Thalassarche melanophrys were measured while at sea and on nest during the incubation stage at Kerguelen Island, southwestern Indian Ocean. Activity-specific metabolic rates of five albatrosses at sea (FMRat-sea) were measured using doubly labeled water (DLW), and by equipping birds with wet-dry activity data loggers that determined when birds were in flight or on the water. The metabolic rates of four birds incubating their eggs (FMRon-nest) were also measured using DLW. The mean±SD FMRat-sea of albatrosses was 611±96 kJ kg,1 d,1 compared to FMRon-nest of 196±52 kJ kg,1 d,1. While at sea, albatrosses spent 52.9±8.2% (N=3) of their time in flight and they landed on the water 41.2±13.9 times per day. The FMR of black-browed albatrosses appear to be intermediate to that of three other albatross species. Based on at-sea activity, the power requirement of flight was estimated to be 8.7 W kg,1 (or 4.0×predicted BMR), which is high compared to other albatross species, but may be explained by the high activity levels of the birds when at sea. The FMRat-sea of albatrosses, when scaled with body mass, are lower than other seabirds of similar body size, which probably reflects the economical nature of their soaring flight. [source]


High-pressure systems for gas-phase free continuous incubation of enriched marine microbial communities performing anaerobic oxidation of methane

BIOTECHNOLOGY & BIOENGINEERING, Issue 3 2010
Christian Deusner
Abstract Novel high-pressure biotechnical systems that were developed and applied for the study of anaerobic oxidation of methane (AOM) are described. The systems, referred to as high-pressure continuous incubation system (HP-CI system) and high-pressure manifold-incubation system (HP-MI system), allow for batch, fed-batch, and continuous gas-phase free incubation at high concentrations of dissolved methane and were designed to meet specific demands for studying environmental regulation and kinetics as well as for enriching microbial biomass in long-term incubation. Anoxic medium is saturated with methane in the first technical stage, and the saturated medium is supplied for biomass incubation in the second stage. Methane can be provided in continuous operation up to 20,MPa and the incubation systems can be operated during constant supply of gas-enriched medium at a hydrostatic pressure up to 45,MPa. To validate the suitability of the high-pressure systems, we present data from continuous and fed-batch incubation of highly active samples prepared from microbial mats from the Black Sea collected at a water depth of 213,m. In continuous operation in the HP-CI system initial methane-dependent sulfide production was enhanced 10- to 15-fold after increasing the methane partial pressure from near ambient pressure of 0.2 to 10.0,MPa at a hydrostatic pressure of 16.0,MPa in the incubation stage. With a hydraulic retention time of 14,h a stable effluent sulfide concentration was reached within less than 3 days and a continuing increase of the volumetric AOM rate from 1.2 to 1.7,mmol,L,1,day,1 was observed over 14 days. In fed-batch incubation the AOM rate increased from 1.5 to 2.7 and 3.6,mmol,L,1,day,1 when the concentration of aqueous methane was stepwise increased from 5 to 15,mmol,L,1 and 45,mmol,L,1. A methane partial pressure of 6,MPa and a hydrostatic pressure of 12,MPa in manifold fed-batch incubation in the HP-MI system yielded a sixfold increase in the volumetric AOM rate. Over subsequent incubation periods AOM rates increased from 0.6 to 1.2,mmol,L,1,day,1 within 26 days of incubation. No inhibition of biomass activity was observed in all continuous and fed-batch incubation experiments. The organisms were able to tolerate high sulfide concentrations and extended starvation periods. Biotechnol. Bioeng. 2010; 105: 524,533. © 2009 Wiley Periodicals, Inc. [source]