Home About us Contact | |||
Incompatible Interaction (incompatible + interaction)
Selected AbstractsAccumulation of Defence Response-related and Unique Expressed Sequence Tags during the Incompatible Interaction in the Oryza sativa,Magnaporthe oryzae PathosystemJOURNAL OF PHYTOPATHOLOGY, Issue 7-8 2009Rekha Dixit Abstract Resistance gene-dependent accumulation of expressed sequence tags (ESTs) was studied in a blast resistant, Oryza sativa ssp. indica cv. Tetep after challenge inoculation with an incompatible race of Magnaporthe oryzae. The nucleotide sequence of 287 randomly selected cDNA clones from the rice cDNA library constructed from the RNA isolated after challenge inoculation of the host was obtained and submitted in NCBI Genbank (Accession Nos. DN475717,DN475431). Of these, 184 (63%) ESTs were highly representative of the rice transcriptomes. A set of 178 unique transcripts was identified after assembly of 287 ESTs into unigenes. These unigenes were categorized into 17 functional groups. Analysis of this EST library illustrated a broad functional representation. Twenty-one unigenes were identified as putative homologues of the genes that were up regulated during host,pathogen interaction. Similarity search of 178 unigenes with NCBI database of 14 plants unigenes showed similarity ranging from 29,100%. The unigenes obtained in this study were physically located on the pseudomolecules of rice genome. This information can be used for determining the arrays of genes being expressed during Oryza sativa,M. oryzae interactions, which will be helpful in understanding the molecular basis of disease resistance. [source] Monitoring Host Nuclear Migration and Degradation with Green Fluorescent Protein during Compatible and Incompatible Interactions of Nicotiana tabacum with Colletotrichum SpeciesJOURNAL OF PHYTOPATHOLOGY, Issue 8-9 2004X. C. Shan Abstract Recent evidence has emerged suggesting that nuclei sense and migrate towards infection sites in plants, and a novel approach to examine the dynamics of nuclei is described utilizing transgenic plants expressing a version of green fluorescent protein (GFP) that specifically labels plant nuclei. Nicotiana tabacum with GFP-labelled nuclei were inoculated with GFP-labelled strains of the hemibiotrophic fungi, Colletotrichum destructivum and C. graminicola. The nucleus in an epidermal host cell migrated to just underneath the appressorium of the compatible fungus, C. destructivum, but then migrated away from the developing fungus once it had penetrated and started to grow biotrophically. As the necrotrophic phase developed, the nuclei appeared to shrink and eventually their green fluorescence was no longer visible. The interaction of C. graminicola with N. tabacum was considered to show non-host incompatibility. The host nuclei in the epidermal cells also migrated underneath the appressoria. Once fungal penetration had failed, the nuclei then migrated back towards locations typically observed in epidermal cells of uninoculated plants. The use of both plant structures and a fungus that are labelled with a readily detectable fluorescent marker provides significant advantages as it permits direct observation of changes in living host and pathogen cells during a plant,fungal interaction. [source] Up-Regulation of OsBIHD1, a Rice Gene Encoding BELL Homeodomain Transcriptional Factor, in Disease Resistance ResponsesPLANT BIOLOGY, Issue 5 2005H. Luo Abstract: In the present study, we cloned and identified a full-length cDNA of a rice gene, OsBIHD1, encoding a homeodomain type transcriptional factor. OsBIHD1 is predicted to encode a 642 amino acid protein and the deduced protein sequence of OsBIHD1 contains all conserved domains, a homeodomain, a BELL domain, a SKY box, and a VSLTLGL box, which are characteristics of the BELL type homedomain proteins. The recombinant OsBIHD1 protein expressed in Escherichia coli bound to the TGTCA motif that is the characteristic cis -element DNA sequence of the homeodomain transcriptional factors. Subcellular localization analysis revealed that the OsBIHD1 protein localized in the nucleus of the plant cells. The OsBIHD1 gene was mapped to chromosome 3 of the rice genome and is a single-copy gene with four exons and three introns. Northern blot analysis showed that expression of OsBIHD1 was activated upon treatment with benzothiadiazole (BTH), which is capable of inducing disease resistance. Expression of OsBIHD1 was also up-regulated rapidly during the first 6 h after inoculation with Magnaporthe grisea in BTH-treated rice seedlings and during the incompatible interaction between M. grisea and a resistant genotype. These results suggest that OsBIHD1 is a BELL type of homeodomain transcription factor present in the nucleus, whose induction is associated with resistance response in rice. [source] Molecular analysis of resistance mechanisms to Orobanche cumana in sunflowerPLANT PATHOLOGY, Issue 3 2007P. Letousey Resistance to the dicotyledenous parasite Orobanche cumana in sunflower is characterized by a low number of parasitic attachments and a confinement of the parasite in host tissues leading to its necrosis. To help understand what determines such resistance mechanisms, molecular, biochemical and histological approaches were employed before (early response) and after (late response) attachment of the broomrape parasite to susceptible (2603) and resistant (LR1) sunflower genotypes. The expression patterns of 11 defence-related genes known to be involved in different metabolic pathways (phenylpropanoids, jasmonate, ethylene) and/or in resistance mechanisms against microorganisms were investigated. RT-PCR and cDNA blot experiments revealed that the resistant genotype exhibited a stronger overall defence response against O. cumana than the susceptible one, involving marker genes of the jasmonate (JA) and salicylic acid (SA) pathways. Among them, the SA-responsive gene, def. (defensin), appeared to be characteristic of LR1 sunflower resistance. However, no JA accumulation and similar SA contents (250,300 ng g,1 FW) were measured by GC/MS in both genotypes, parasitized or not. In addition, three cDNAs, isolated by a suppression-subtractive hybridization, were shown to be strongly induced only in the resistant genotype 8 days post-inoculation, when the first O. cumana attachments occurred. These genes, putatively encoding a methionine synthase, a glutathione S-transferase and a quinone oxidoreductase, might be involved in detoxification of reactive oxygen species, suggesting the occurrence of an oxidative burst during the incompatible interaction. Finally, host cell-wall modifications leading to parasite-confinement were correlated with more intense callose depositions in the resistant genotype, concomitant with over-expression of the callose synthase cDNA HaGSL1. [source] Activation of defence reactions in Solanaceae: where is the specificity?CELLULAR MICROBIOLOGY, Issue 1 2007Sabine Desender Summary When a potential pathogen attempts to infect a plant, biochemical and molecular communication takes place and leads to the induction of plant defence mechanisms. In the case of efficient defence, visible symptoms are restricted and the pathogen does not multiply (incompatible interaction); when defence is inefficient, the plant becomes rapidly infected (compatible interaction). During the last 30 years, a growing body of knowledge on plant,pathogen interactions has been gathered, and a large number of studies investigate the induction of various plant defence reactions by pathogens or by pathogen-derived compounds. However, as most papers focus on incompatible interactions, there is still a lack of understanding about the similarities and differences between compatible and incompatible situations. This review targets the question of specificity in Solanaceae,pathogen interactions, by comparing defence patterns in plants challenged with virulent or avirulent pathogens (or with pathogen-associated molecular patterns from these). A special emphasis is made on analysing whether defence reactions in Solanaceae depend primarily on the type of elicitor, on the plant genotype/species, or on the type of interaction (compatible or incompatible). [source] Morphological characterization of the interaction between Diplocarpon rosae and various rose speciesPLANT PATHOLOGY, Issue 1 2005O. Blechert Blackspot, caused by Diplocarpon rosae, is the most severe and ubiquitous disease of garden roses, but information is lacking about genotype-specific forms of resistance and susceptibility of the host. Macro- and microscopic analyses of 34 rose genotypes with a defined monoconidial culture black spot inoculum identified susceptible and resistant rose genotypes and further genotype-specific subdivisions, indicating the presence of partial forms of resistance and different resistance mechanisms. In total, eight interaction types were characterized, five representing compatible (types 1,5) and three representing incompatible interactions (types 6,8). The incompatible interactions were characterized by the lack of any visible fungal structures beneath the cuticle (type 8), single-cell necroses (type 7) or necroses of larger cell clusters (type 6), the latter two types with penetration hyphae and haustoria in epidermal cells. [source] Proteomic analysis of bacterial-blight defense-responsive proteins in rice leaf bladesPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 22 2006Tariq Mahmood Abstract Plants exhibit resistance against incompatible pathogens, via localized and systemic responses as part of an integrated defense mechanism. To study the compatible and incompatible interactions between rice and bacteria, a proteomic approach was applied. Rice cv. Java 14 seedlings were inoculated with compatible (Xo7435) and incompatible (T7174) races of Xanthomonasoryzae pv. oryzae (Xoo). Cytosolic and membrane proteins were fractionated from the leaf blades and separated by 2-D PAGE. From 366 proteins analyzed, 20 were differentially expressed in response to bacterial inoculation. These proteins were categorized into classes related to energy (30%), metabolism (20%), and defense (20%). Among the 20 proteins, ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (RuBisCO LSU) was fragmented into two smaller proteins by T7174 and Xo7435 inoculation. Treatment with jasmonic acid (JA), a signaling molecule in plant defense responses, changed the level of protein accumulation for 5 of the 20 proteins. Thaumatin-like protein and probenazole-inducible protein (PBZ) were commonly up-regulated by T7174 and Xo7435 inoculation and JA treatment. These results suggest that synthesis of the defense-related thaumatin-like protein and PBZ are stimulated by JA in the defense response pathway of rice against bacterial blight. [source] Activation of defence reactions in Solanaceae: where is the specificity?CELLULAR MICROBIOLOGY, Issue 1 2007Sabine Desender Summary When a potential pathogen attempts to infect a plant, biochemical and molecular communication takes place and leads to the induction of plant defence mechanisms. In the case of efficient defence, visible symptoms are restricted and the pathogen does not multiply (incompatible interaction); when defence is inefficient, the plant becomes rapidly infected (compatible interaction). During the last 30 years, a growing body of knowledge on plant,pathogen interactions has been gathered, and a large number of studies investigate the induction of various plant defence reactions by pathogens or by pathogen-derived compounds. However, as most papers focus on incompatible interactions, there is still a lack of understanding about the similarities and differences between compatible and incompatible situations. This review targets the question of specificity in Solanaceae,pathogen interactions, by comparing defence patterns in plants challenged with virulent or avirulent pathogens (or with pathogen-associated molecular patterns from these). A special emphasis is made on analysing whether defence reactions in Solanaceae depend primarily on the type of elicitor, on the plant genotype/species, or on the type of interaction (compatible or incompatible). [source] |