Home About us Contact | |||
Incompatible Elements (incompatible + element)
Selected AbstractsMantle-derived and crustal melts dichotomy in northern Greece: spatiotemporal and geodynamic implicationsGEOLOGICAL JOURNAL, Issue 1 2004Diego Perugini Abstract Two distinct groups of subduction-related (orogenic) granitoid rocks, one Jurassic and the other Tertiary, occur in the area between the Vardar (Axios) Zone and the Rhodope Massif in northern Greece. The two groups of granitoids differ in many respects. The first group shows evolved geochemical characters, it is not associated with mafic facies, and evidence of magmatic interaction between mantle- and crustal-derived melts is lacking. The second group has less evolved geochemical characters, it is associated with larger amount of mafic facies, and magmatic interaction processes between mantle-derived and crustal melts are ubiquitous as evidenced by mafic microgranular enclaves and synplutonic dykes showing different enrichment in K2O, Ti, and incompatible elements. This kind of magmatism can be attributed to the complex geodynamic evolution of the area. In particular, we suggest that two successive subduction events related to the closure of the Vardar and the Pindos oceans, respectively, occurred in the investigated area from Late Jurassic to Tertiary. We relate the genesis of Jurassic granitoids to the first subduction event, whereas Tertiary granitoids are associated with the second subduction. Fluids released by the two subducted slabs induced metasomatic processes generating a ,leopard skin' mantle wedge able to produce mafic melts ranging from typical calc-alkaline to ultra-potassic. Such melts interacted in various amounts with crustal calc-alkaline anatectic melts to generate the wide spectrum of Tertiary granitoids occurring in the study area. Copyright © 2004 John Wiley & Sons, Ltd. [source] Pre-Variscan metagabbro from NW Sardinia, Italy: evidence of an enriched asthenospheric mantle source for continental alkali basaltsGEOLOGICAL JOURNAL, Issue 2 2003Marcello Franceschelli Abstract Small metagabbro bodies are enclosed in the metasedimentary sequence of NW Sardinia. The metagabbros represent the last magmatic episode before the continent,continent collision that built up the Variscan chain of north Sardinia. The metagabbros are composed of variable proportions of plagioclase and pyroxene igneous relics and metamorphic minerals. Major and trace element data, specifically high TiO2 and P2O5 and low K and Rb contents, as well as light rare-earth elements, Nb and Ta enrichment, suggest an alkaline affinity for the gabbro and emplacement in a within-plate tectonic setting. The gabbro was derived from an ocean island alkali basalt-like asthenospheric mantle source enriched with incompatible elements and uncontaminated by crustal or subducted materials. Non-modal modelling indicates a 5,7% partial melting of the asthenospheric mantle. Copyright © 2003 John Wiley & Sons, Ltd. [source] Geochemistry of peridotite xenoliths in alkali basalts from Jeju Island, KoreaISLAND ARC, Issue 4 2002SEONG HEE CHOI Abstract Ultramafic xenoliths in alkali basalts from Jeju Island, Korea, are mostly spinel lherzolites with subordinate amounts of spinel harzburgites and pyroxenites. The compositions of major oxides and compatible to moderately incompatible elements of the Jeju peridotite xenoliths suggest that they are residues after various extents of melting. The estimated degrees of partial melting from compositionally homogeneous and unfractionated mantle to form the residual xenoliths reach 30%. However, their complex patterns of chondrite-normalized rare earth element, from light rare earth element (LREE)-depleted through spoon-shaped to LREE-enriched, reflect an additional process. Metasomatism by a small amount of melt/fluid enriched in LREE followed the former melt removal, which resulted in the enrichment of the incompatible trace elements. Sr and Nd isotopic ratios of the Jeju xenoliths display a wide scatter from depleted mid-oceanic ridge basalt (MORB)-like to near bulk-earth estimates along the MORB,oceanic island basalt (OIB) mantle array. The varieties in modal proportions of minerals, (La/Yb)N ratio and Sr-Nd isotopes for the xenoliths demonstrate that the lithospheric mantle beneath Jeju Island is heterogeneous. The heterogeneity is a probable result of its long-term growth and enrichment history. [source] Compositional and lithological diversity among brecciated lunar meteorites of intermediate iron concentrationMETEORITICS & PLANETARY SCIENCE, Issue 9 2009Randy L. Korotev Most have iron concentrations intermediate to those of the numerous feldspathic lunar meteorites (3,7% FeO) and the basaltic lunar meteorites (17,23% FeO). All but one are polymict breccias. Some, as implied by their intermediate composition, are mainly mixtures of brecciated anorthosite and mare basalt, with low concentrations of incompatible elements such as Sm (1,3 ,g/g). These breccias likely originate from points on the Moon where mare basalt has mixed with material of the FHT (Feldspathic Highlands Terrane). Others, however, are not anorthosite-basalt mixtures. Three (17,75 ,/g Sm) consist mainly of nonmare mafic material from the nearside PKT (Procellarum KREEP Terrane) and a few are ternary mixtures of material from the FHT, PKT, and maria. Some contain mafic, nonmare lithologies like anorthositic norites, norites, gabbronorites, and troctolite. These breccias are largely unlike breccias of the Apollo collection in that they are poor in Sm as well as highly feldspathic anorthosite such as that common at the Apollo 16 site. Several have high Th/Sm compared to Apollo breccias. Dhofar 961, which is olivine gabbronoritic and moderately rich in Sm, has lower Eu/Sm than Apollo samples of similar Sm concentration. This difference indicates that the carrier of rare earth elements is not KREEP, as known from the Apollo missions. On the basis of our present knowledge from remote sensing, among lunar meteorites Dhofar 961 is the one most likely to have originated from South Pole-Aitken basin on the lunar far side. [source] A petrogenetic model for the origin and compositional variation of the martian basaltic meteoritesMETEORITICS & PLANETARY SCIENCE, Issue 12 2003Lars E. BORG The models are based on low to high pressure phase relationships estimated from experimental runs and estimates of the composition of silicate Mars from the literature. These models attempt to constrain the mechanisms by which the martian meteorites obtained their superchondritic CaO/Al2O3 ratios and their source regions obtained their parent/daughter (87Rb/86Sr, 147Sm/144Nd, and 176Lu/177Hf) ratios calculated from the initial Sr, Nd, and Hf isotopic compositions of the meteorites. High pressure experiments suggest that majoritic garnet is the liquidus phase for Mars relevant compositions at or above 12 GPa. Early crystallization of this phase from a martian magma ocean yields a liquid characterized by an elevated CaO/Al2O3 ratio and a high Mg#. Olivine-pyroxene-garnet-dominated cumulates that crystallize subsequently will also be characterized by superchondritic CaO/Al2O3 ratios. Melting of these cumulates yields liquids with major element compositions that are similar to calculated parental melts of the martian meteorites. Furthermore, crystallization models demonstrate that some of these cumulates have parent/daughter ratios that are similar to those calculated for the most incompatible-element-depleted source region (i.e., that of the meteorite Queen Alexandra [QUE] 94201). The incompatible-element abundances of the most depleted (QUE 94201-like) source region have also been calculated and provide an estimate of the composition of depleted martian mantle. The incompatible-element pattern of depleted martian mantle calculated here is very similar to the pattern estimated for depleted Earth's mantle. Melting the depleted martian mantle composition reproduces the abundances of many incompatible elements in the parental melt of QUE 94201 (e.g., Ba, Th, K, P, Hf, Zr, and heavy rare earth elements) fairly well but does not reproduce the abundances of Rb, U, Ta and light rare earth elements. The source regions for meteorites such as Shergotty are successfully modeled as mixtures of depleted martian mantle and a late stage liquid trapped in the magma ocean cumulate pile. Melting of this hybrid source yields liquids with major element abundances and incompatible-element patterns that are very similar to the Shergotty bulk rock. [source] Petrochemistry of Volcanic Rocks in the Hishikari Mining Area of Southern Japan, with Implications for the Relative Contribution of Lower Crust and Mantle-derived BasaltRESOURCE GEOLOGY, Issue 4 2003Takahiro Hosono Abstract. This study presents the petrographical, mineralogical, and geochemical characteristics of Late Pliocene-Pleistocene volcanic rocks distributed in the Hishikari gold mining area of southern Kyushu, Japan, and discusses their origin and evolution. The Hishikari volcanic rocks (HVR), on the basis of age and chemical compositions, are divided into the Kurosonsan (2.4,1.0 Ma) and Shishimano (1.7,0.5 Ma) Groups, which occur in the northern and southern part of the area, respectively. Each group is composed of three andesites and one rhyodacite. HVR are characterized by high concentrations of incompatible elements compared with other volcanic rocks in southern Kyushu, and have low Sr/Nd and high Th/U, Th/Pb, and U/Pb ratios compared with typical subduction-related arc volcanic rocks. Modal and whole-rock compositions of the HVR change systematically with the age of the rocks. Mafic mineral and augite/hypersthene ratios of the andesites decrease with decreasing age in the Kurosonsan Group, whereas in the Shishimano Group, these ratios are higher in the youngest andesite. Similarly, major and trace element compositions of the younger andesites in the former group are enriched in felsic components, whereas in the latter group the youngest andesite is more mafic than older andesites. Moreover, the crystallization temperature of phenocryst minerals decreases with younger age in the former group, whereas the opposite trend is seen in the latter group. Another significant feature is that rhyodacite in the Shishimano Group is enriched in felsic minerals and incompatible elements, and exhibits higher crystallization temperatures of phenocryst minerals than the rhyodacite of the Kurosonsan Group. Geochemical attributes of the HVR and other volcanic rocks in southern Kyushu indicate that a lower subcontinental crust, characterized by so-called EMI-type Sr-Nd and DUPAL anomaly-like Pb isotopic compositions, is distributed beneath the upper to middle crust of the Shimanto Supergroup. The HVR would be more enriched in felsic materials derived from the lower crust by high-alumina basaltic magma from the mantle than volcanic rocks in other areas of southern Kyushu. The Kurosonsan Group advanced the degree of the lower crust contribution with decreasing age from 51 %, through 61 and 66 % to 77 %. In the Shishimano Group, the younger rhyodacite and andesite are derived from hotter magmas with smaller amounts of lower crust component (58 and 57 %) than the older two andesites (65 % and 68 %). We suggest that the Shishimano rhyodacite, which is considered to be responsible for gold mineralization, was formed by large degree of fractional crystallization of hot basaltic andesite magma with less lower crustal component. [source] Crustal Composition of China Continent Constrained from Heat Flow Data and Helium Isotope Ratio of Underground FluidACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 1 2010Yang WANG Abstract: Based on conservation of energy principle and heat flow data in China continent, the upper limit of 1.3 ,W/m3 heat production is obtained for continental crust in China. Furthermore, using the data of heat flow and helium isotope ratio of underground fluid, the heat productions of different tectonic units in China continent are estimated in range of 0.58,1.12 ,W/m3 with a median of 0.85 ,W/m3. Accordingly, the contents of U, Th and K2O in China crust are in ranges of 0.83,1.76 ,g/g, 3.16,6.69 ,g/g, and 1.0%,2.12%, respectively. These results indicate that the abundance of radioactive elements in the crust of China continent is much higher than that of Archean crust; and this fact implies China's continental crust is much evolved in chemical composition. Meanwhile, significant lateral variation of crustal composition is also exhibited among different tectonic units in China continent. The crust of eastern China is much enriched in incompatible elements such as U, Th and K than that of western China; and the crust of orogenic belts is more enriched than that of platform regions. It can also be inferred that the crusts of eastern China and orogenic belts are much felsic than those of western China and platform regions, respectively, derived from the positive correlation between the heat production and SiO2 content of bulk crust. This deduction is consistent with the results derived from the crustal seismic velocity data in China. According to the facts of the lower seismic velocity of China than the average value of global crust, and the higher heat production of China continent compared with global crust composition models published by previous studies, it is deduced that the average composition models of global continent crust by Rudnick and Fountain (1995), Rudnick and Gao (2003), Weaver and Tarney (1984), Shaw et al. (1986), and Wedepohl (1995) overestimate the abundance of incompatible elements such as U, Th and K of continental crust. [source] Geochronology and Geochemistry of Mafic Dikes from Hainan Island and Tectonic ImplicationsACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 6 2009CAO Jianjin Abstract: In the present study, the major and trace element compositions, as well as Sr, Nd isotopic compositions and K-Ar age data in mafic dikes from Hainan Island, China, have been analyzed. Whole-rock K-Ar dating yielded a magmatic duration of 61,98 Ma for mafic dikes. Mafic dikes have a very high concentration of incompatible elements, for example, Ba, Rb, Sr, K, rare earth elements, and especially light rare earth elements (LREE), and negative anomalies of Nb, Ta, and Ti in the normalized trace element patterns. The initial 87Sr/86Sr ratios and ,Sr(t) of the mafic dikes are 0.70634,0.71193 and +27.7 to +112.2, respectively. In the 87Sr/86Sr versus ,Nd(t) diagram, the Hainan Island mafic dikes plot between fields for depleted mantle and enriched mantle type 2. All these characteristics show that the mantle (source region) of mafic dikes in this area experienced metasomatism by fluids relatively enriched in LREE and large ion lithophile elements. The genesis of Hainan Island mafic dikes is explained as a result of the mixing of asthenospheric mantle with lithospheric mantle that experienced metasomatism by the subduction of the Pacific Plate. This is different from the Hainan Island Cenozoic basalts mainly derived from depleted asthenospheric mantle, and possibly, minor metasomatised lithospheric mantle. This study suggests that the Mesozoic and Cenozoic lithospheric revolutions in Hainan Island can be divided into three stages: (1) the compression orogenesis stage before 98 Ma. The dominant factor during this stage is the subduction of the ancient Pacific Plate beneath this area. The lithospheric mantle changed into enriched mantle type 2 by metasomatism; (2) the thinning and extension stage during 61,98 Ma. The dominant factor during this stage is that the asthenospheric mantle invaded and corroded the lithospheric mantle; and (3) the large-scale thinning and extension stage after 61 Ma. The large-scale asthenospheric upwelling results in the strong erupting of Cenozoic basalts, large-scale thinning of the lithosphere, the southward translating and counterclockwise rotating of Hainan Island, and the opening of the South China Sea. [source] |