Inorganic Particles (inorganic + particle)

Distribution by Scientific Domains


Selected Abstracts


Rethinking what constitutes suspended sediment

HYDROLOGICAL PROCESSES, Issue 9 2001
Ian G. Droppo
Abstract Although cohesive suspended sediment is now known to be transported primarily as flocculated material, there is still a misconception of what constitutes suspended sediment. Flocs represent a complex matrix of microbial communities, organic particles (e.g. detritus, extracellular polymers and cellular debris), inorganic particles (e.g. clays and silts) and substantial interfloc spaces (pores), which allow for the retention or flow through of water. Flocculation results in significant alteration of the hydrodynamics of the constituent particles (by modifying their effective size, shape, density and porosity), thereby affecting the transport of sediment and associated contaminants. The composition and structure of a floc is in a continuous state of change as the medium in which it is transported provides the floc with further building materials, energy, nutrients and chemicals for biological growth, chemical reactions and morphological development. As such, a floc's physical (e.g. transport), chemical (e.g. contaminant adsorption) and biological (community development and contaminant biotransformation) behaviour are also in a continuous state of change, with concomitant effects on their aquatic environment as a whole. Although it is recognized that floc form will influence floc behaviour, there is still a basic lack of knowledge of the complex links between the structural components of a floc and how their individual properties and behaviours in combination with others will influence a floc's physical, chemical and biological behaviour. This paper provides a comprehensive conceptual model that links the many interrelated structural components of typical flocs and their interrelated behavioural aspects, in order to enhance our understanding of what constitutes suspended sediment. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Emission of trace toxic metals during pulverized fuel combustion of Czech coals

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 13 2003
P. Danihelka
Abstract A study of the trace elements emission (As, Se, Cd, Co, Cr, Cu, Zn, Hg, Tl, Pb, Ni, Sn, Sb, V, Mn and Fe) from pulverized coal combustion has been made at six heating and power stations situated in the Czech Republic. The amount of chlorine in coal has considerable influence on volatilization of some elements such as Zn, Cu, Pb, Hg and Tl, which is explained by the formation of thermodynamically stable compounds of these elements with chlorine. Generally, the affinities for Cl follows the order Tl > Cu > Zn > Pb > Co > Mn > Sn > Hg. The experimental data indicates enrichment of some of the trace toxic elements in the emissions (Cu, Zn, As, Se, Cd, Sn, Sb, Hg and Pb) and good agreement was obtained by thermodynamic equilibrium calculations with a few exceptions. In the case of Fe, Mn, Co, Cr and Sn calculated values are overestimated in the bottom ash and there are zero predicted amounts of these elements in the fly ash. In comparison, the results from experiments show up to 80% of these elements retained in fly ash. This implies that there exist additional steps leading to the enrichment by Fe, Mn, Co, Cr and Sn of small particles. Such mechanisms could include the ejection during devolatilization of small inorganic particles from the coal of bottom ash particles, or disintegration of the char containing these metals to small particles of fly ash. On the other hand, there are slightly overestimated or similar values of relative enrichment factors for As, V, Cu, Cd, Sb, Tl and Pb in the fly ashes and zero predicted values for bottom ashes. Our experimental results show about 5% or less of these elements are retained in bottom ashes, so they probably remain in the bottom ash inside unburned parts of coal. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Synthesis and characterization of novel polyimide/SiO2 nanocomposite materials containing phenylphosphine oxide via sol-gel technique

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2010
Canan Kizilkaya
Abstract In this article, a series of novel polyimide/silica (PI/SiO2) nanocomposite coating materials were prepared from tetraethoxysilane (TEOS), ,-glycidyloxypropyltrimethoxysilane (GOTMS), and polyamic acid (PAA) via sol-gel technique. PAA was prepared by the reaction of 3,3,,4,4,-benzophenone tetracarboxylic dianhydride (BTDA) and bis (3-aminophenyl) phenyphosphine oxide (BAPPO) in N -methyl-2- pyrrolidone (NMP). BAPPO was synthesized hydrogenation of bis (3-nitrophenyl) phenyphosphine oxide (BNPPO) in the presence of Pd/C. The silica content in the hybrid coating materials was varied from 0 to 20 wt %. The molecular structures of the composite materials were analyzed by means of FT-IR and 29Si-NMR spectroscopy techniques. The physical and mechanical properties of the nanocomposites were evaluated by various techniques such as, hardness, contact angle, and optical transmission and tensile tests. These measurements revealed that all the properties of the nanocomposite coatings were improved noticeable, by the addition of sol-gel precursor into the coating formulation. Thermogravimetric analysis showed that the incorporation of sol-gel precursor into the polyimide matrix leads to an enhancement in the thermal stability and also flame resistance properties of the coating material. The surface morphology of the hybrid coating was characterized by scanning electron microscopy (SEM). SEM studies indicated that nanometer-scaled inorganic particles were homogenously dispersed throughout the polyimide matrix © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source]


Thiol-ene Hybrid Organic/Inorganic Nanostructured Coatings Based on Thiol-Functionalized Zirconium Oxoclusters

MACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 23 2007
Marco Sangermano
Abstract The thiol-functionalized zirconium oxocluster Zr12(µ3 -O)8(µ3 -OH)8(MP)24,·,4MPA was used as inorganic nanosized building block in the thiol-ene photopolymerization of APE and TH in a 1:1 molar mixture. Transparent and crack-free coatings were obtained, and TEM analysis showed that the inorganic particles are well dispersed within the polymeric network with no significant macroscopic agglomeration. An increase of Tg values, storage modulus in the rubbery region, and thermal stability were evidenced by increasing the zirconium oxocluster content in the photocurable formulations. XPS analysis and SIMS depth profile were carried out on UV cured films and showed the presence of a homogeneously distributed zirconium oxocluster. [source]


Preparation and Characterization of Nanostructured TiO2/Epoxy Polymeric Films

MACROMOLECULAR MATERIALS & ENGINEERING, Issue 5 2006
Marco Sangermano
Abstract Summary: Titania-containing coatings were prepared by cationic photopolymerization of an epoxy resin either by dispersion of preformed TiO2 nanoparticles or by their in-situ generation through a sol-gel dual-cure process. The kinetics of photopolymerization was evaluated by real-time FT-IR, studying the effect of the TiO2 concentration. The properties of cured films were investigated, showing an increase of hydrophilicity on the surface of the coatings with increasing TiO2 content. TEM analysis demonstrated that it is possible to achieve a significantly better control of the dispersion of the inorganic particles within the organic matrix by in-situ generation of TiO2, thus completely avoiding macroscopic phase separation and obtaining homogeneous, transparent coatings. Bright-field TEM micrograph for TIP20 dual-cured film. [source]


Nanostructured polyolefins/clay composites: role of the molecular interaction at the interface

POLYMERS FOR ADVANCED TECHNOLOGIES, Issue 6 2008
Elisa Passaglia
Abstract The extent of interphase interactions between polymer phase and inorganic particles is the driving force addressing the preparation/properties design in the field of the corresponding micro- and nanocomposites. In the case of preparation of nanocomposites based on polyolefins (POs) and inorganic compounds as potentially nanodispersed phase, the use of a PO with proper functional groups is necessary for the interface adhesion and stabilization of the nanostructured morphology. According to this approach, ethylene/propylene copolymers with a different propylene content were used for the preparation of nanocomposites through melt mixing with organophilic montmorillonites (OMMT). By taking into account the important role of functionalities grafted onto POs, two different synthetic approaches were compared here: (1) the dispersion of the inorganic filler was obtained by using previously functionalized POs bearing carboxylate groups as matrices; (2) the nanocomposites were prepared by performing contemporaneously the functionalization of POs (by using maleic anhydride (MAH) and/or diethyl maleate (DEM)) and the dispersion of the filler in a one-step process. The morphology of the nanocomposites as well as the variation of solubility and glass transition temperature (Tg) of the PO matrix were evaluated and tentatively discussed with reference to functionalization degrees, structure of PO, and preparation procedure. Copyright © 2008 John Wiley & Sons, Ltd. [source]