Inlet

Distribution by Scientific Domains

Terms modified by Inlet

  • inlet air temperature
  • inlet angle
  • inlet concentration
  • inlet condition
  • inlet mass spectrometry
  • inlet pressure
  • inlet temperature
  • inlet velocity

  • Selected Abstracts


    Simulating larval supply to estuarine nursery areas: how important are physical processes to the supply of larvae to the Aransas Pass Inlet?

    FISHERIES OCEANOGRAPHY, Issue 3 2004
    C. A. Brown
    Abstract Factors controlling the movement of fish larvae from coastal spawning environments to estuarine nursery areas are important to fish recruitment. In this paper, the role of physical processes in larval transport to estuarine nursery areas in the Aransas Pass region, Texas, is examined using a circulation model coupled with a fixed-depth particle transport model. Two phases of transport are examined: transport on the shelf to the tidal inlet and transport through the inlet to estuarine nursery areas. Observed pulsing in the supply of red drum (Sciaenops ocellatus) larvae to the tidal inlet is significantly correlated with modeled particle supply. This pulsing is not correlated with a specific physical process, but results from the interaction of several factors affecting water movement, including low-frequency variations in water level and wind forcing. Simulations suggest that the primary spawning region for red drum larvae that utilize nursery habitat in the Aransas Pass region is located north of the inlet. Patterns in the trajectories of particles that successfully enter the inlet reveal that they move alongshelf in the nearshore region and then move into the inlet, rather than moving directly across the shelf to the inlet. The approach path of particles outside the inlet determines the spatial transport patterns for inlets with branched channels and multiple bays. This study demonstrates that physical processes play an important role in determining larval supply to a tidal inlet. [source]


    Estimation of Degradation Rates by Satisfying Mass Balance at the Inlet

    GROUND WATER, Issue 4 2010
    Vedat Batu
    Using a steady-state mass conservative solute transport analytical solution that is based on the third-type (or flux-type or Cauchy) source condition, a method is developed to estimate the degradation parameters of solutes in groundwater. Then, the inadequacy of the methods based on the first-type source-based analytical solute transport solution is presented both theoretically and through an example. It is shown that the third-type source analytical solution exactly satisfies the mass balance constraint at the inlet location. It is also shown that the first-type source (or constant source concentration or Dirichlet) solution fails to satisfy the mass balance constraint at the inlet location and the degree of the failure depends on the value of the degradation as well as the flow and solute transport parameters. The error in the first-type source solution is determined with dimensionless parameters by comparing its results with the third-type source solution. Methods for estimating the degradation parameter values that are based on the first-type steady-state solute transport solution may significantly overestimate the degradation parameter values depending on the values of flow and solute transport parameters. It is recommended that the third-type source solution be used in estimating degradation parameters using measured concentrations instead of the first-type source solution. [source]


    The deglaciation of Clyde Inlet, northeastern Baffin Island, Arctic Canada,

    JOURNAL OF QUATERNARY SCIENCE, Issue 3 2007
    Jason P. Briner
    Abstract The behaviour of ice sheets as they retreated from their Last Glacial Maximum (LGM) positions provides insights into Lateglacial and early Holocene ice-sheet dynamics and climate change. The pattern of deglaciation of the Laurentide Ice Sheet (LIS) in arctic fiord landscapes can now be well dated using cosmogenic exposure dating. We use cosmogenic exposure and radiocarbon ages to constrain the deglaciation history of Clyde Inlet, a 120,km long fiord on northeastern Baffin Island. The LIS reached the continental shelf during the LGM, retreated from the coastal lowlands by 12.5,±,0.7,ka (n,=,3), and from the fiord mouth by 11.7,±,2.2,ka (n,=,4). Rapid retreat from the outer fiord occurred 10.3,±,1.3,ka (n,=,6), with the terminus reaching the inner fiord shortly after 9.4,ka (n,=,2), where several moraine systems were deposited between ca. 9.4 and ca. 8.4,ka. These moraines represent fluctuations of the LIS during the warmest summers since the last interglaciation, and this suggests that the ice sheet was responding to increased snowfall. Before retreating from the head of Clyde Inlet, the LIS margin fluctuated at least twice between ca. 7.9 and ca. 8.5,ka, possibly in response to the 8.2,ka cold event. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    Temporal distribution and composition of the ichthyoplankton from Leopoldo's Inlet on the Upper Paraná River floodplain (Brazil)

    JOURNAL OF ZOOLOGY, Issue 4 2002
    Reinaldo José de Castro
    Abstract Temporal distribution and composition of ichthyoplankton and their relationships with some environmental variables of Leopoldo's Inlet (Ressaco do Leopoldo) on the upper Paraná River floodplain, southern Brazil, were analysed. Samples were taken from February 1991 to February 1992, and 3480 larvae were collected. The highest density of larvae was observed in November 1991 (36.79 larvae/10 m3) at night (night/day ratio 7: 1). Species composition showed a predominance of Characiformes (80%). There was a high density (4.28 larvae/10 m3) of Bryconamericus stramineus throughout almost the whole study period. The majority of the species were more frequently collected at night. Pearson's correlation indicated a relationship between larval density, temperature, and pluviometric index. Leopoldo's Inlet, whose ichthyofauna is mainly composed of grazing and resident species, shows favourable conditions for fish reproduction and development. [source]


    Inlet and Outlet Devices for Rotary Blood Pumps,

    ARTIFICIAL ORGANS, Issue 10 2004
    Xinwei Song
    Abstract: The purposes of inlet and outlet devices for rotary blood pumps, including inducers and diffusers for axial pumps, inlet and exit volutes for centrifugal pumps, and inlet and outlet cannulas, are to guide the blood into the impeller, where the blood is accelerated, and to convert the high kinetic energy into pressure after the impeller discharge, respectively. The designs of the inlet and outlet devices have an important bearing on the pump performance. Their designs are highly dependent on computational fluid dynamics (CFD) analysis, guided by intuition and experience. For inlet devices, the design objectives are to eliminate separated flow, to minimize recirculation, and to equalize the radial components of velocity. For outlet devices, the design goals are to reduce speed, to minimize energy loss, and to avoid flow separation and whirl. CFD analyses indicate the velocity field and pressure distribution. Geometrical optimization of these components has been implemented in order to improve the flow pattern. [source]


    Microgeographical diversification of threespine stickleback: body shape,habitat correlations in a small, ecologically diverse Alaskan drainage

    BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 1 2009
    WINDSOR E. AGUIRRE
    Adaptive radiations are a major source of evolutionary diversity in nature, and understanding how they originate and how organisms diversify during the early stages of adaptive radiation is a major problem in evolutionary biology. The relationship between habitat type and body shape variation was investigated in a postglacial radiation of threespine stickleback in the upper Fish Creek drainage of Cook Inlet, Alaska. Although small, the upper Fish Creek drainage includes ecologically diverse lakes and streams in close proximity to one another that harbour abundant stickleback. Specimens from ancestral anadromous and derived resident freshwater populations differed substantially and could be distinguished by body shape alone, suggesting that the initial stages of adaptation contribute disproportionately to evolutionary divergence. Body shape divergence among resident freshwater populations was also considerable, and phenotypic distances among samples from freshwater populations were associated with habitat type but not geographical distance. As expected, stream stickleback from slow-moving, structurally complex environments tended to have the deepest bodies, stickleback from lakes with a mostly benthic habitat were similar but less extreme, and stickleback from lakes with a mostly limnetic habitat were the most shallow-bodied, elongate fish. Beyond adapting rapidly to conditions in freshwater environments, stickleback can diversify rapidly over small geographical scales in freshwater systems despite opportunities for gene flow. This study highlights the importance of ecological heterogeneity over small geographical scales for evolutionary diversification during the early stages of adaptive radiation, and lays the foundation for future research on this ecologically diverse, postglacial system. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98, 139,151. [source]


    Evolutionary diversification of opercle shape in Cook Inlet threespine stickleback

    BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 4 2009
    SAAD ARIF
    We investigated the evolution of a large facial bone, the opercle (OP), in lake populations of the threespine stickleback that were founded by anadromous ancestors, in Cook Inlet, Alaska. Recent studies characterized OP variation among marine and lake populations and mapped a quantitative trait locus with a large influence on OP shape. Using populations from diverse environments and independent evolutionary histories, we examined divergence of OP shape from that of the anadromous ancestor. We report preliminary evidence for divergence between benthic and generalist lake ecotypes, necessitating further investigation. Furthermore, rapid divergence of OP shape has occurred in a lake population that was founded by anadromous stickleback in the 1980s, which is consistent with divergence of other phenotypic traits and with OP diversification in other lake populations. By contrast, there has been limited evolution of OP shape in a second lake population that may have experienced a genetic bottleneck early in its history and lacks genetic variation for OP divergence. Taken together, the results obtained from these two populations are consistent with studies of other stickleback phenotypic traits that implicate ancestral variation in postglacial adaptive radiation of threespine stickleback in fresh water. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 97, 832,844. [source]


    A micropillar-integrated smart microfluidic device for specific capture and sorting of cells

    ELECTROPHORESIS, Issue 24 2007
    Yan-Jun Liu
    Abstract An integrated smart microfluidic device consisting of nickel micropillars, microvalves, and microchannels was developed for specific capture and sorting of cells. A regular hexagonal array of nickel micropillars was integrated on the bottom of a microchannel by standard photolithography, which can generate strong induced magnetic field gradients under an external magnetic field to efficiently trap superparamagnetic beads (SPMBs) in a flowing stream, forming a bed with sufficient magnetic beads as a capture zone. Fluids could be manipulated by programmed controlling the integrated air-pressure-actuated microvalves, based on which in situ bio-functionalization of SPMBs trapped in the capture zone was realized by covalent attachment of specific proteins directly to their surface on the integrated microfluidic device. In this case, only small volumes of protein solutions (62.5,nL in the capture zone; 375,nL in total volume needed to fill the device from inlet A to the intersection of outlet channels F and G) can meet the need for protein! The newly designed microfluidic device reduced greatly chemical and biological reagent consumption and simplified drastically tedious manual handling. Based on the specific interaction between wheat germ agglutinin (WGA) and N -acetylglucosamine on the cell membrane, A549 cancer cells were effectively captured and sorted on the microfluidic device. Capture efficiency ranged from 62 to 74%. The integrated microfluidic device provides a reliable technique for cell sorting. [source]


    Analysis of sub-ppb levels of Fe(II), Co(II), and Ni(II) by electrokinetic supercharging preconcentration, CZE separation, and in-capillary derivatization

    ELECTROPHORESIS, Issue 20 2007
    Marek Urbanek
    Abstract The analysis of sub-ppb levels of Fe(II), Co(II), and Ni(II) in heat exchanger fluids of nuclear power plants is needed to monitor corrosion. A method involving preconcentration with electrokinetic supercharging (electrokinetic injection with transient ITP), CZE separation, and in-capillary derivatization with ortho -phenanthroline (o -Phe) for direct UV detection was thus developed. First, a multizone BGE was loaded into the capillary by successive hydrodynamic introduction of zones of (i) o -Phe-containing BGE, (ii) BGE for the zonal separation, and (iii) ammonium-based leading electrolyte. Metal cations were electrokinetically injected and stacked at the capillary inlet behind this last leading zone. Finally, a terminating electrolyte zone was hydrodynamically introduced. When a constant voltage was applied, metal ions kept on concentrating isotachophoretically, then separated in CZE mode, were complexed by migrating through an o -Phe zone, and finally detected by direct absorbance. To detect extremely thin peaks, it was attempted for the first time to focus the derivatization reagent by inducing a second transient ITP, before labeling analytes, already separated in CZE mode. With this arrangement, LODs were about 30,ppt in pure water. In heat exchanger fluid matrices containing 1000,ppm bore and 2,ppm lithium, only Fe(II) cation was detected among the three cations of interest at the 1,ppb level using the present method, and its LOD was about ten times higher, due to the lower loading rate during electrokinetic injection. [source]


    Determination of trace cationic impurities in butylmethylimidazolium-based ionic liquids: From transient to comprehensive single-capillary counterflow isotachophoresis-zone electrophoresis

    ELECTROPHORESIS, Issue 23 2006
    Marek Urbánek
    Abstract Determination of impurities in ionic liquids (ILs) remains a difficult task. In this work, the hyphenation of isotachophoretic,(ITP) preconcentration to zone electrophoresis,(ZE) has been explored for the trace analysis of the cationic impurities Na+, Li+, and methylimidazolium (MI+) in butylmethylimidazolium (BMI+)-based ILs. Simultaneous detection of UV-transparent and UV-absorbing impurities was ensured by a BGE composed of creatinine-acetate buffer. To induce ITP, three different strategies were evaluated: (i),Sample self-stacking ensured by the addition of ammonium acetate (NH4Ac) to 25,50-fold diluted IL solution (transient ITP). (ii),Complete ITP-ZE separation performed in a single capillary: ITP was realized in discontinuous electrolytes comprising an 80,mM NH4Ac, 40,mM acetic acid, 30,mM ,-CD, pH,5.05, leading electrolyte,(LE) and a 10,mM creatinine, 10,mM acetic acid, pH,4.9, terminating electrolyte,(TE). To create the ZE stage, the ITP stack of analytes was moved back toward the capillary inlet by pressure and simultaneously the capillary was filled with the BGE. This protocol made it possible to accommodate a 2.5-times diluted IL sample. (iii),Complete counterflow ITP-ZE with continuous electrokinetic sample supply: the ITP stage was performed in a capillary filled with a 150,mM NH4Ac, 75,mM acetic acid, 30,mM ,-CD, pH,5.0 LE, with 40-times diluted IL at the capillary inlet. BMI+ from IL acts as the terminating ion. The LODs reached in this latter case were at the 10 and 1,ppb levels for MI+ and Li+ in diluted IL matrix, respectively. [source]


    A self-contained polymeric 2-DE chip system for rapid and easy analysis

    ELECTROPHORESIS, Issue 18 2006
    Keisuke Usui
    Abstract We developed a polymeric 2-DE chip system. The chip consisted of an IEF region, an SDS-PAGE region, a valveless connection port, and a sample introduction port. A "junction structure" as a valveless connection port, which allowed separating and connecting the first- and second-dimensional gels, was fabricated between their regions. A "solution inlet" as a sample introduction port was fabricated to perform the liquid and sample introductions without solution leakage. Simultaneous sample monitoring was performed using the on-chip detection system. The performances of the system were demonstrated using commercially available proteins as a standard specimen and tissue-extracted proteins as the real samples. All procedures were employed without any movement of relocation part. This new 2-D separation system realized improved labor-intensive operations and a reduced experimental time. [source]


    Poly(dimethylsiloxane)-based microfluidic device with electrospray ionization-mass spectrometry interface for protein identification

    ELECTROPHORESIS, Issue 21 2003
    Wang-Chou Sung
    Abstract An easy method to fabricate poly(dimethylsiloxane) (PDMS)-based microfluidic chips for protein identification by tandem mass spectrometry is presented. This microchip has typical electrophoretic microchannels, a flow-through sampling inlet, and a sheathless nanoelectrospray ionization (ESI) interface. The surface of the microchannel was modified with 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and the generated electroosmotic flow under acidic buffer condition used for the separation was found to be more stable compared to that generated by the microchannel without modification. The feasibility of the device for flow-through sampling, separation, and ESI-MS/MS analysis was demonstrated by the analysis of a standard mixture composed of three tryptic peptides. Results show that four peaks corresponding to three peptide standards and acetylated products of the standard peptide were well resolved and the deduced sequences were consistent with those expected. Furthermore, the compatibility of this device with other miniaturized devices to integrate the whole process was also explored by connecting a miniaturized enzymatic digestion cartridge and a desalting cartridge in series to the sampling inlet of the microchip for the identification of a model protein, ,-casein. [source]


    Thermal modeling and simulation of an integrated solid oxide fuel cell and charcoal gasification system

    ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, Issue 3 2009
    C. Ozgur Colpan
    Abstract In this study we propose a novel integrated charcoal gasification and solid oxide fuel cell (SOFC) system, which is intended to produce electricity and heat simultaneously. This system mainly consists of an updraft gasifier using air and steam as the gasification agents, a planar and direct internal reforming SOFC and a low temperature gas cleanup system. The performance of this system is assessed through numerical modeling using a pre-developed and validated heat transfer model of the SOFC and thermodynamic models for the rest of the components. These models are used to simulate the performance of the cell and system for a case study. In addition, a parametric study is conducted to assess the effect of Reynolds number at the fuel channel inlet of the SOFC on the cell performance, e.g., fuel utilization and power density, and the system performance, e.g., electrical efficiency, exergetic efficiency, and power to heat ratio. The number of stacks is also calculated for different Reynolds numbers to discuss the economical feasibility of the integrated system. The results show that the electrical efficiency, exergetic efficiency and power to heat ratio of this system are 33.31%, 45.72%, and 1.004, respectively, for the base case. The parametric study points out that taking the Reynolds number low yields higher electrical and exergetic efficiencies for the system, but it also increases the cost of the system. © 2009 American Institute of Chemical Engineers Environ Prog, 2009 [source]


    Evaluating acute toxicity of methyl parathion application in constructed wetland mesocosms,

    ENVIRONMENTAL TOXICOLOGY, Issue 5 2004
    C. D. Milam
    Abstract Wetland ecosystems have reduced ambient levels of various organic and metallic compounds, although their effectiveness on agricultural pesticides is not well documented. Five stations within each of two 10 × 50 m constructed wetlands (two vegetated, two nonvegetated) were selected to measure the fate and effects of methyl parathion (MeP). Following a simulated storm event (0.64 cm of rainfall), aqueous, sediment, and plant samples were collected and analyzed spatially (5, 10, 20, and 40 m from the inlet) and temporally (after 3,10 days) for MeP concentrations and for the impact of those concentrations on the aquatic fauna. Aqueous toxicity to fish decreased spatially and temporally in the vegetated mesocosm. Pimephales promelas survival was significantly reduced, to 68%, at the 10-m station of the nonvegetated wetlands (3 h postapplication), with pesticide concentrations averaging 9.6 ,g MeP/L. Ceriodaphnia in both the vegetated and nonvegetated wetlands was sensitive (i.e., a significant acute response to MeP occurred) to pesticide concentrations through 10 days postapplication. Mean MeP concentrations in water ranged from 0.5 to 15.4 ,g/L and from 0.1 to 27.0 ,g/L in the vegetated and nonvegetated wetlands, respectively. Hyalella azteca aqueous tests resulted in significant mortality in the 5-m vegetated segment 10 days after exposure to MeP (2.2 ,g/L). Solid-phase (10-day) sediment toxicity tests showed no significant reduction in Chironomus tentans survival or growth, except for the sediments sampled 3 h postapplication in the nonvegetated wetland (65% survival). Thereafter, midge survival averaged >87% in sediments sampled from both wetlands. These data suggest that wetlands play a significant role in mitigating the effect of MeP exposure in sensitive aquatic biota. © 2004 Wiley Periodicals, Inc. Environ Toxicol 19: 471,479, 2004. [source]


    Development of sediment toxicity test with tropical peneid shrimps

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 7 2000
    Rosane B. C. Moraes
    Abstract A methodology to test the toxicity of marine and estuarine sediments was developed using postlarval organisms of the marine shrimp Penaeus schmitti and P. paulensis. The tests were conducted in aquariums with a water feedback system and a sediment layer of 2 cm. The postlarvae exposure time to the sediments was 10, 28, and 52 d. The tested sediments were collected in contaminated sites of Guanabara and Sepetiba Bays and at the reference site of Ilha Grande inlet in Rio de Janerio, Brazil. The toxicity of the sediments was evidenced with exposures of 28 d or longer. The sediment from Saco do Engenho (Sepetiba Bay) was the most toxic, affecting the survival of both P. schmitti and P. paulensis. The sediment from Guanabara Bay was toxic to P. schmitti, affecting its survival after 28 d of exposure. [source]


    Penetrating injury at the thoracic inlet in a Paint-Arab mare

    EQUINE VETERINARY EDUCATION, Issue 12 2009
    Y. R. Rojman
    Summary A 12-year-old Paint-Arab mare was admitted for evaluation of a penetrating chest laceration at the thoracic inlet. The left brachiocephalic muscle was transected and the recurrent laryngeal nerve was traumatised. Subsequent to the injury, the horse developed Horner's syndrome on the left side of the neck and face, Grade IV left laryngeal hemiplegia, dysphagia, cough and subcutaneous emphysema. The defect was closed in multiple layers. Antimicrobial and antiinflammatory therapy was instituted along with local wound care. The mare remained bright and responsive and the wound healed normally. The mare showed no signs of respiratory distress. Dysphagia and ptosis persisted at 30 days post trauma. [source]


    Balances of phosphorus and nitrogen in carp ponds

    FISHERIES MANAGEMENT & ECOLOGY, Issue 1-2 2000
    R. Knösche
    The impact of carp pond effluents on natural waters was investigated in the German federal states of Brandenburg, Saxony and Bavaria, and in Hungary. Data from 38 ponds (size = 0.25,122 ha) were available for the calculation of inlet,outlet differences. An average difference of 0.51 kg phosphorus (P) ha,1 year,1 was obtained. This means that every hectare of pond surface releases 510 g P less than it receives from the incoming water. This result was independent of the amount of fish harvested (, 1500 ha,1 year,1). The average retention of P (P-balance) was 5.71 kg P ha,1 year,1. Phosphorus retention increased with increasing intensity of production. Nitrogen (N) retention increased with production intensity from 78.5 kg ha,1 year,1 in German standard ponds to >,290 kg N ha,1 year,1in pig-cum-fish ponds in Hungary. A predominantly mineralized sludge suspension is released during harvesting at loads below 1% of the retention capacity of the pond. Under usual pond management regimes, the sludge load during harvesting ranged from 50 to 200 L ha,1, equivalent to 0.3,9.3 g dry matter ha,1. The present study suggests that ponds are not a burden on the environment. By contrast, these water bodies improve water quality. Therefore, pressures to reduce the intensity of pond production cannot be justified on the basis of supposed impacts on water quality. However, even if loads during harvesting are low compared with the retention capacity of the pond, more effort should be carried out to reduce the pollution of streams by pond outlets downstream. This can be done by limiting pond drainage to periods when the suspended material has settled or by short-term sedimentation of the sludge in a settling pond downstream of the rearing facility. [source]


    Simulating larval supply to estuarine nursery areas: how important are physical processes to the supply of larvae to the Aransas Pass Inlet?

    FISHERIES OCEANOGRAPHY, Issue 3 2004
    C. A. Brown
    Abstract Factors controlling the movement of fish larvae from coastal spawning environments to estuarine nursery areas are important to fish recruitment. In this paper, the role of physical processes in larval transport to estuarine nursery areas in the Aransas Pass region, Texas, is examined using a circulation model coupled with a fixed-depth particle transport model. Two phases of transport are examined: transport on the shelf to the tidal inlet and transport through the inlet to estuarine nursery areas. Observed pulsing in the supply of red drum (Sciaenops ocellatus) larvae to the tidal inlet is significantly correlated with modeled particle supply. This pulsing is not correlated with a specific physical process, but results from the interaction of several factors affecting water movement, including low-frequency variations in water level and wind forcing. Simulations suggest that the primary spawning region for red drum larvae that utilize nursery habitat in the Aransas Pass region is located north of the inlet. Patterns in the trajectories of particles that successfully enter the inlet reveal that they move alongshelf in the nearshore region and then move into the inlet, rather than moving directly across the shelf to the inlet. The approach path of particles outside the inlet determines the spatial transport patterns for inlets with branched channels and multiple bays. This study demonstrates that physical processes play an important role in determining larval supply to a tidal inlet. [source]


    Integration of lakes and streams in a landscape perspective: the importance of material processing on spatial patterns and temporal coherence

    FRESHWATER BIOLOGY, Issue 3 2000
    George W. Kling
    1. We studied the spatial and temporal patterns of change in a suite of twenty-one chemical and biological variables in a lake district in arctic Alaska, U.S.A. The study included fourteen stream sites and ten lake sites, nine of which were in a direct series of surface drainage. All twenty-four sites were sampled between one and five times a year from 1991 to 1997. 2. Stream sites tended to have higher values of major anions and cations than the lake sites, while the lake sites had higher values of particulate carbon, nitrogen, phosphorous and chlorophyll a. There were consistent and statistically significant differences in concentrations of variables measured at the inlet versus the outlet of lakes, and in variables measured at upstream versus downstream sites in the stream reaches which connect the lakes. In-lake processing tended to consume alkalinity, conductivity, H+, DIC, Ca2+, Mg2+, CO2, CH4, and NO3,, and produce K+ and dissolved organic carbon (DOC). In-stream processing resulted in the opposite trends (e.g. consumption of K+ and DOC), and the magnitudes of change were often similar to those measured in the lakes but with the opposite sign. 3. Observed spatial patterns in the study lakes included mean concentrations of variables which increased, decreased or were constant along the lake chain from high to low altitude in the catchment (stream sites showed no spatial patterns with any variables). The strongest spatial patterns were of increasing conductivity, Ca2+, Mg2+, alkalinity, dissolved inorganic carbon and pH with lake chain number (high to low altitude in the basin). These patterns were partly determined by the effect of increasing catchment area feeding into lakes further downslope, and partly by the systematic processing of materials in lakes and in the stream segments between lakes. 4. Synchrony (the temporal coherence or correlation of response) of variables across all lakes ranged from 0.18 for particulate phosphorus to 0.90 for Mg2+ the average synchrony for all twenty-one variables was 0.50. The synchronous behaviour of lake pairs was primarily related to the spatial location or proximity of the lakes for all variables taken together and for many individual variables, and secondarily, to the catchment to lake area ratio and the water residence time. 5. These results illustrate that, over small geographic areas, and somewhat independent of lake or stream morphometry, the consistent and directional (downslope) processing of materials helps produce spatial patterns which are coherent over time for many limnological variables. We combine concepts from stream, lake and landscape ecology, and develop a conceptual view of landscape mass balance. This view highlights that the integration of material processing in both lakes and rivers is critical for understanding the structure and function of surface waters, especially from a landscape perspective. [source]


    Eutectic Gallium-Indium (EGaIn): A Liquid Metal Alloy for the Formation of Stable Structures in Microchannels at Room Temperature,

    ADVANCED FUNCTIONAL MATERIALS, Issue 7 2008
    Michael D. Dickey
    Abstract This paper describes the rheological behavior of the liquid metal eutectic gallium-indium (EGaIn) as it is injected into microfluidic channels to form stable microstructures of liquid metal. EGaIn is well- ;suited for this application because of its rheological properties at room temperature: it behaves like an elastic material until it experiences a critical surface stress, at which point it yields and flows readily. These properties allow EGaIn to fill microchannels rapidly when sufficient pressure is applied to the inlet of the channels, yet maintain structural stability within the channels once ambient pressure is restored. Experiments conducted in microfluidic channels, and in a parallel-plate rheometer, suggest that EGaIn's behavior is dictated by the properties of its surface (predominantly gallium oxide, as determined by Auger measurement s); these two experiments both yield approximately the same number for the critical surface stress required to induce EGaIn to flow (,0 .5,N/m). This analysis,which shows that the pressure that must be exceeded for EGaIn to flow through a microchannel is inversely proportional to the critical (i.e., smallest) dimension of the channel,is useful to guide future fabrication of microfluidic channels to mold EGaIn into functional microstructures. [source]


    A spatially advancing turbulent flow and heat transfer in a curved channel

    HEAT TRANSFER - ASIAN RESEARCH (FORMERLY HEAT TRANSFER-JAPANESE RESEARCH), Issue 1 2010
    Koji Matsubara
    Abstract Direct numerical simulation was performed for a spatially advancing turbulent flow and heat transfer in a two-dimensional curved channel, where one wall was heated to a constant temperature and the other wall was cooled to a different constant temperature. In the simulation, fully developed flow and temperature from the straight-channel driver was passed through the inlet of the curved-channel domain. The frictional Reynolds number was assigned 150, and the Prandtl number was given 0.71. Since the flow field was examined in the previous paper, the thermal features are mainly targeted in this paper. The turbulent heat flux showed trends consistent with a growing process of large-scale vortices. In the curved part, the wall-normal component of the turbulent heat flux was twice as large as the counterpart in the straight part, suggesting active heat transport of large-scale vortices. In the inner side of the same section, temperature fluctuation was abnormally large compared with the modest fluctuation of the wall-normal velocity. This was caused by the combined effect of the large-scale motion of the vortices and the wide variation of the mean temperature; in such a temperature distribution, large-scale ejection of the hot fluid near the outer wall, which is transported into the near inner-wall region, should have a large impact on the thermal boundary layer near the inner wall. Wave number decomposition was conducted for various statistics, which showed that the contribution of the large-scale vortex to the total turbulent heat flux normal to the wall reached roughly 80% inside the channel 135° downstream from the curved-channel inlet. © 2009 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/htj.20275 [source]


    Numerical simulation of asymmetrical flow and heat transfer behind a hill in shear flows

    HEAT TRANSFER - ASIAN RESEARCH (FORMERLY HEAT TRANSFER-JAPANESE RESEARCH), Issue 8 2008
    Hideki Yanaoka
    Abstract Three-dimensional numerical simulations of asymmetrical flows and heat transfer around a hill in shear flows were performed. When shear velocity distributions are introduced at the inlet, a vortex pair is formed asymmetrically to the spanwise direction behind the hill. Further, an asymmetrical hairpin vortex is periodically generated downstream. The leg of the asymmetrical hairpin vortex on the high-speed side collapses first. Further downstream, the asymmetrical hairpin vortex breaks down earlier than the symmetrical hairpin vortex, and streamwise vortices appear on the high-speed side. These streamwise vortices increase the heat transfer downstream. In contrast, no hairpin vortex appears in the case of a strong shear velocity distribution, but instead a streamwise vortex appears. The heat transfer decreases downstream since the turbulence generated by streamwise vortices is weak. © 2008 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/htj.20223 [source]


    Lattice Boltzmann simulation on flow fields connected with multiple side-channels

    HEAT TRANSFER - ASIAN RESEARCH (FORMERLY HEAT TRANSFER-JAPANESE RESEARCH), Issue 2 2007
    Shohji Tsushima
    Abstract For this study, using the lattice Boltzmann method (LBM), we conducted flow-field analyses in which two straight channels were mutually connected with multiple side-channels. Results showed that calculated flow fields can be categorized into three types of flow pattern depending on flow field geometry and flow conditions. The following typical flow patterns were identified: case 1, the incoming flow passes uniformly through the side channels; case 2, the flow passes preferentially through the side channel in the inlet and the outlet; and case 3, the flow passes mainly through the side channel of the outlet side. Results also indicate that these flow patterns depend on two dimensionless parameters: the ratio of permeability of the side channels to the channel width, and the Reynolds number. © 2007 Wiley Periodicals, Inc. Heat Trans Asian Res, 36(2): 96,104, 2007; Published online in Wiley InterScience (www. interscience.wiley.com). DOI 10.1002/htj.20143 [source]


    A basic study on humidity recovery by using micro-porous media (Effects of thermal condition of fluids and geometrical condition of apparatus on transport performance)

    HEAT TRANSFER - ASIAN RESEARCH (FORMERLY HEAT TRANSFER-JAPANESE RESEARCH), Issue 8 2006
    Shixue Wang
    Abstract Using an experimental apparatus to examine the performance of heat and mass transfer between constant-temperature water and dry air through a porous plate having extremely small pores, the effects of the thermal conditions in the fluids and the geometric condition of the apparatus on moisture transport were measured. The effects of water temperature, thickness of the porous plate, and channel height of the flowing air on moisture transport are noticeable. However, the effect of air temperature in the channel inlet on moisture transport is slight. In addition, in order to evaluate the degree of air humidity absorption, a parameter called the moisture absorption rate was introduced. The moisture absorption rate was shown to decrease with increasing air velocity and varies only slightly for a plate thickness of 1 mm and decreases for a plate thickness of 3.5 mm with increasing water temperature. © 2006 Wiley Periodicals, Inc. Heat Trans Asian Res, 35(8): 568,581, 2006; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/htj.20133 [source]


    Does an alteration of dialyzer design and geometry affect biocompatibility parameters?

    HEMODIALYSIS INTERNATIONAL, Issue 2 2006
    Karel OPATRNÝ Jr.
    Abstract The aim of the study was to assess the biocompatibility profile of a newly developed high-flux polysulfone dialyzer type (FX-class dialyzer). The new class of dialyzers incorporates a number of novel design features (including a new membrane) that have been developed specifically in order to enhance the removal of small- and middle-size molecules. The new FX dialyzer series was compared with the classical routinely used high-flux polysulfone F series of dialyzers. In an open prospective, randomized, crossover clinical study, concentrations of the C5a complement component, and leukocyte count in blood and various thrombogenicity parameters were evaluated before, and at 15 and 60 min of hemodialysis at both dialyzer inlet and outlet in 9 long-term hemodialysis patients using the FX60S dialyzers and, after crossover, the classical F60S, while in another 9 patients, the evaluation was made with the dialyzers used in reverse order. The comparison of dialyzers based on evaluation of the group including all procedures with the FX60S and the group including procedures with the F60S did not reveal significant differences in platelet count, activated partial thromboplastin times, plasma heparin levels, platelet factor-4, D-dimer, C5a, and leukocyte count at any point of the collecting period. Both dialyzer types showed a significant increase in the plasma levels of the thrombin-antithrombin III complexes; however, the measured levels were only slightly elevated compared with the upper end of the normal range. Biocompatibility parameters reflecting the behavior of platelets, fibrinolysis, complement activation, and leukopenia do not differ during dialysis with either the FX60S or the F60S despite their large differences in design and geometry features. Although coagulation activation, as evaluated by one of the parameters used, was slightly higher with the FX60S, it was still within the range seen with other highly biocompatible dialyzers and therefore is not indicative of any appreciable activation of the coagulation system. Thus, the incorporation of various performance-enhancing design features into the new FX class of dialyzers does not result in a deterioration of their biocompatibility profile, which is comparable to that of the classical F series of dialyzers. [source]


    Ionic dialysance: Principle and review of its clinical relevance for quantification of hemodialysis efficiency

    HEMODIALYSIS INTERNATIONAL, Issue 2 2005
    Lucile Mercadal
    Ionic dialysance (D) is an online measured variable now available on several dialysis monitors to evaluate small-solute clearance. Based on conductivity measurements in the inlet and outlet dialysate, the principle of the measurement and the different measurement methods are described. Studies that have evaluated the reliability of ionic dialysance to assess dialysis efficiency are discussed. These studies are divided into two groups: the first comparing ionic dialysance to urea clearance and the second comparing Dt/V to Kt/Vurea, in which the uncertainties of the measurement of Vurea could have misrepresented the relationship between Dt/V and Kt/Vurea. When Kt/Vurea via the Daugirdas second-generation equation taking the rebound into account is considered, slight,even nonsignificant,differences are evidenced between Kt/Vurea and Dt/V. Therefore, ionic dialysance should be considered as a valid measure in future guidelines for dialysis efficiency. [source]


    Evaluation of endoscopic and imaging modalities in the diagnosis of structural disorders of the ileal pouch

    INFLAMMATORY BOWEL DISEASES, Issue 9 2010
    Linda Tang MD
    Abstract Background: Computerized tomography enterography (CTE), gastrograffin enema (GGE), magnetic resonance imaging (MRI), and pouch endoscopy (PES) have commonly been used to assess ileal pouch disorders. However, their diagnostic utility has not been systematically evaluated. The aims of this study were to compare these imaging techniques to each other and to optimize diagnosis of pouch disorders by using a combination of these diagnostic modalities. Methods: Clinical data of patients from the Pouchitis Clinic from 2003 to 2008 who had a PES and at least 1 additional imaging modalities (CTE, GGE, or MRI) used for evaluation of ileal pouch disorders were retrospectively evaluated. We analyzed the accuracy, sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV) with which these tests were able diagnose pouch inlet and distal small bowel and pouch outlet strictures, pouch fistulas, sinuses, and leaks. Subsequently, accuracy was recalculated by combining 2 imaging modalities to see if this could enhance accuracy. Results: A total of 66 patients underwent evaluation with PES and 1 other imaging modality as follows: PES + CTE (n = 23), PES + GGE (n = 34), and PES + MRI (n = 26). The mean age was 41.5 ± 14.5 years, with 28 being female (42.4%). Sixty patients (90.9%) had J pouches and 59 (89.4%) had a preoperative diagnosis of ulcerative colitis. Overall, CTE, GGE, MRI, and PES all had reasonable accuracy for the diagnosis of small bowel and inlet strictures (73.9%,95.4%), outlet strictures (87.9%,92.3%), fistula (76.9%,84.8%), sinus (68.0%,93.9%), and pouch leak (83,93.9%). CTE had the lowest accuracy for small bowel and inlet strictures (73.9%) and MRI had the lowest accuracy for pouch sinus (68.0%). Combining 2 imaging tests can increase the accuracy of diagnosis to 100% for strictures, fistulas, sinus, and pouch leaks. Conclusions: CTE, GGE, MRI, and PES offer complementary information on disorders of the pouch and the combination of these tests increases diagnostic accuracy for complex cases. (Inflamm Bowel Dis 2010) [source]


    Prediction of entrance length and mass suction rate for a cylindrical sucking funnel

    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 6 2010
    Dipti Prasad Mishra
    Abstract Conservation equations for mass, momentum and energy have been solved numerically for a cylindrical funnel with louvers (lateral openings on the side wall of the cylindrical funnel through which air can come into it) to compute the suction rate of air into the funnel. The nozzle placed centrally at the bottom of the cylinder ejects high-velocity hot gaseous products so that atmospheric air gets sucked into the funnel. The objective of the work is to compute the ratio of the rate of mass suction to that of the mass ejected by the nozzle for different operating conditions and geometrical size of the funnel. From the computation it has been found that there exists optimum funnel diameter and optimum funnel height for which the mass suction is the highest. The protruding length of the nozzle into the funnel has almost no effect on the mass suction rate after a certain funnel height. The louvers opening area has a very high impact on the mass suction rate. The entrance length for such a sucking funnel is strikingly much lower compared with a simple cylindrical pipe having uniform flow at the inlet at same Reynolds number. A new correlation has been developed to propose the entrance length for a sucking pipe, the rate of mass suction into it and the exhaust plume temperature over a wide range of operating parameters that are normally encountered in a general funnel operations of naval or merchant ship. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    Topology optimization of microfluidic mixers

    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 5 2009
    Casper Schousboe Andreasen
    Abstract This paper demonstrates the application of the topology optimization method as a general and systematic approach for microfluidic mixer design. The mixing process is modeled as convection dominated transport in low Reynolds number incompressible flow. The mixer performance is maximized by altering the layout of flow/non-flow regions subject to a constraint on the pressure drop between inlet and outlet. For a square cross-sectioned pipe the mixing is increased by 70% compared with a straight pipe at the cost of a 2.5 fold increase in pressure drop. Another example where only the bottom profile of the channel is a design domain results in intricate herring bone patterns that confirm findings from the literature. Copyright © 2008 John Wiley & Sons, Ltd. [source]


    Numerical study of an inviscid incompressible flow through a channel of finite length

    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 12 2009
    Vasily N. Govorukhin
    Abstract A two-dimensional inviscid incompressible flow in a rectilinear channel of finite length is studied numerically. Both the normal velocity and the vorticity are given at the inlet, and only the normal velocity is specified at the outlet. The flow is described in terms of the stream function and vorticity. To solve the unsteady problem numerically, we propose a version of the vortex particle method. The vorticity field is approximated using its values at a set of fluid particles. A pseudo-symplectic integrator is employed to solve the system of ordinary differential equations governing the motion of fluid particles. The stream function is computed using the Galerkin method. Unsteady flows developing from an initial perturbation in the form of an elliptical patch of vorticity are calculated for various values of the volume flux of fluid through the channel. It is shown that if the flux of fluid is large, the initial vortex patch is washed out of the channel, and when the flux is reduced, the initial perturbation evolves to a steady flow with stagnation regions. Copyright © 2008 John Wiley & Sons, Ltd. [source]