Home About us Contact | |||
Initiator Decomposition (initiator + decomposition)
Selected AbstractsKinetic study of methacrylate copolymerization systems by thermoanalysis methodsJOURNAL OF APPLIED POLYMER SCIENCE, Issue 5 2008Ali Habibi Abstract The free-radical solution copolymerization of isobutyl methacrylate with lauryl methacrylate in the presence of an inhibitor was studied with thermoanalysis methods. A set of inhibited polymerization experiments was designed. Four different levels of initial inhibitor/initiator molar ratios were considered. In situ polymerization experiments were carried out with differential scanning calorimetry. Furthermore, to determine the impact of the polymerization media on the rate of initiation, the kinetics of the initiator decomposition were followed with nonisothermal thermoanalysis methods, and the results were compared with in situ polymerization counterparts. The robust M -estimation method was used to retrieve the kinetic parameters of the copolymerization system. This estimation method led to a reasonable prediction error for the dataset with strong multicollinearity. The model-free isoconversional method was employed to find the variation of the Arrhenius activation energy with the conversion. It was found that robust M -estimation outperformed existing methods of estimation in terms of statistical precision and computational speed, while maintaining good robustness. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008 [source] Electrospray ionization mass spectrometric study of end-groups in peroxydicarbonate-initiated radical polymerizationJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 18 2008Michael Buback Abstract Initiation by diethyl peroxydicarbonate (E-PDC), di- n -tetradecyl peroxydicarbonate (nTD-PDC), di- n -hexadecyl peroxydicarbonate (nHD-PDC), and di-2-ethylhexyl peroxydicarbonate (2EH-PDC) of free-radical polymerizations of methyl methacrylate in benzene solution was studied by end-group analysis via electrospray ionization mass spectrometry (ESI-MS). Unambiguous assignment of ESI-MS peaks allows for identification of the type of radical that starts chain growth. In case of initiation by dialkyl peroxydicarbonates with linear alkyl groups, almost exclusively alkoxy carbonyloxyl species, which are the primary fragments from initiator decomposition, occur as end-groups. With 2EH-PDC, however, both the primary 2-ethylhexoxy carbonyloxyl fragment and a second moiety, which is formed by decarboxylation of the 2-ethylhexoxy carbonyloxyl radical, are clearly observed as end-groups. The decarboxylation process is described by a concerted mechanism which involves a 1,5-hydrogen shift reaction. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6071,6081, 2008 [source] Modeling the reversible addition,fragmentation transfer polymerization processJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 11 2003Aileen R. Wang Abstract A kinetic model has been developed for reversible addition,fragmentation transfer (RAFT) polymerization with the method of moments. The model predicts the monomer conversion, number-average molecular weight, and polydispersity of the molecular weight distribution. It also provides detailed information about the development of various types of chain species during polymerization, including propagating radical chains, adduct radical chains, dormant chains, and three types of dead chains. The effects of the RAFT agent concentration and the rate constants of the initiator decomposition, radical addition, fragmentation, disproportionation, and recombination termination of propagating radicals and cross-termination between propagating and adduct radicals on the kinetics and polymer chain properties are examined with the model. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1553,1566, 2003 [source] Microwave-Assisted Free Radical Copolymerizations of Styrene and Methyl MethacrylateMACROMOLECULAR RAPID COMMUNICATIONS, Issue 4 2007Heiner Stange Abstract Free radical copolymerizations of styrene and MMA were performed in toluene and DMF as solvents using different peroxide initiators with and without microwave irradiation. A general trend showed significant solvent dependence of monomer conversion rate only for copolymerizations initiated by tert -butyl perbenzoate in DMF compared to toluene but nearly no impact for copolymerizations initiated by dicumyl peroxide and dibenzoyl peroxide. Significant variations in copolymer composition were not observed for reactions under conventional heating compared to microwave irradiation. It was concluded that enhanced initiator decomposition under microwave irradiation in DMF accelerate polymerization of styrene and MMA by formation of larger amount of initiator radicals. [source] |