Initiating Radical (initiating + radical)

Distribution by Scientific Domains


Selected Abstracts


Synthesis of Polystyrene- block -Poly(methyl methacrylate) with Fluorene at the Junction: Sequential Anionic and Controlled Radical Polymerization from a Single Carbon

MACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 24 2009
Nathan D. Contrella
Abstract Polystyrene- block -poly(methyl methacrylate) (PS- b -PMMA) has been synthesized by sequential anionic and reverse atom transfer radical polymerization (ATRP) or a variation of nitroxide mediated polymerization (NMP) from a single initiating site, specifically the 9-carbon on 2,7-dibromofluorene or fluorene. The addition of the second arm (PS) relied on thermal decomposition of 2,2,-azoisobutyronitrile (AIBN) to generate radicals, abstracting the 9-H on the polymer-bound fluorene species to form the initiating radical. Styrene was not present in the reaction mixture when AIBN was decomposed, preventing competition between addition across the monomeric alkene and hydrogen abstraction from the fluorene. After 1,h, styrene was introduced and mediation of the subsequent radical polymerization was achieved by the presence of CuCl2/ligand or TEMPO. Characterization of the diblock copolymers by gel permeation chromatography (GPC) revealed substantial shifts in number average molecular weight () values compared to the anionically prepared PMMA macroinitiator, while polydispersity indices (PDI's) remained relatively low (typically,<,1.5). Characterization by UV detection with GPC (at 310,nm) verified that the diblock polymer is chromophore-bound, which was further verified by UV-vis spectroscopy of the isolated diblock. [source]


Laser Induced Marking of Polymer Chains with Radical Spin Traps

MACROMOLECULAR RAPID COMMUNICATIONS, Issue 6 2008
Thomas Junkers
Abstract A pathway for marking of polymer chains with radical spin traps during pulsed laser polymerization in free radical polymerization is presented. By introducing a so-called marker that forms a non-propagating radical at (or shortly after) the incidence of a laser pulse, a polymer subdistribution is generated by specifically terminating propagating radicals via combination with such a marker radical. The generated polymer subdistribution can subsequently be imaged by modern soft-ionization mass spectrometry. Herein, the general methodology of the method in which such marker is generated via reaction of an initiating radical with a nitrone is demonstrated on the examples of BA and VAc. [source]


Photopolymerization of 1,6-hexanedioldiacrylate initiated by three-component systems based on N -arylphthalimides

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 16 2004
T. Brian Cavitt
Abstract Three-component photoinitiators comprised of an N -arylphthalimide, a diarylketone, and a tertiary amine were investigated for their initiation efficiency of acrylate polymerization. The use of an electron-deficient N -arylphthalimide resulted in a greater acrylate polymerization rate than an electron-rich N -arylphthalimide. Triplet energies of each N -arylphthalimide, determined from their phosphorescence spectra, and the respective rate constants for triplet quenching by the N -arylphthalimide derivatives (acquired via laser flash photolysis) indicated that an electron,proton transfer from an intermediate radical species to the N -arylphthalimide (not energy transfer from triplet sensitization) is responsible for generating the initiating radicals under the conditions and species concentrations used for polymerization. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4009,4015, 2004 [source]


Grafting CVD of Poly(vinyl pyrrolidone) for Durable Scleral Lens Coatings,

CHEMICAL VAPOR DEPOSITION, Issue 1-3 2010
Kyra L. Sedransk
Abstract Grafting (g)CVD from the monomer 1-vinyl-2-pyrrolidone (VP) and the Type II initiator benzophenone (BP) under 254,nm UV irradiation yields durable hydrophilic coatings on substrates of poly(methacrylic acid) (PMA) derivatives, desirable for scleral lens applications. The gCVD polymerization of the VP monomer is essentially complete, and little excess BP remains in the film. Process optimization, through single variable and two fractional factorial experiments, result in retention of >90% of the as-deposited film thickness after rinsing. Increasing the initiator dosing time beyond 10,min, or the UV exposure time beyond 5,min, has little effect on the as-deposited thickness, or percentage of film retained after rinsing. This suggests that UV irradiation rapidly transforms most of the BP absorbed on the surface to initiating radicals. Once sufficient initiator dosage and UV exposure have been achieved, the initial deposition thickness is controlled primarily by the total flux of monomer to the surface, which is consistent with previous studies. For all samples, thickness loss occurs primarily during the first 30 days of saline soak-testing with no statistically significant loss (p,>,0.25) during the next 90 days of soak testing. While the additional UV exposure time has a limited effect on initial film thickness, it does increase long term thickness retention, most likely by forming crosslinked and branched structures within the film. All samples tested retain sufficient gCVD coating thickness to impart improved hydrophilicity at the surface throughout the entire 120 day saline soak-testing period. The fractional factorial experiments correlate improved hydrophilicity with an interaction between initiator dosage time and UV exposure time. Indeed, decreasing these two process variables in tandem provides the greatest reduction in contact angle. While the uncoated PMA displayed 92.3°,±,2.1° advancing and 86.7°,±,3.0° receding contact angles with water, the most hydrophilic gCVD coating lowers the advancing and receding contact angles to 39.5°,±,2.6° and 36.2°,±,1.6°, respectively. [source]