Initial Stresses (initial + stress)

Distribution by Scientific Domains


Selected Abstracts


Physiological and behavioral effects of social introduction on adult male rhesus macaques

AMERICAN JOURNAL OF PRIMATOLOGY, Issue 6 2008
Lara A. Doyle
Abstract Pair housing of laboratory macaques is widely considered to lead to positive changes in well-being, yet the process of introduction is viewed as potentially stressful and risk-prone. Behavioral and physiological data were collected on eight adult male rhesus macaques before, during, and after the process of introduction, in order to measure the initial stress of introduction as well as long-term changes in well-being. Socially experienced subjects, all implanted with biotelemetry devices, were studied in five successive phases: baseline (singly housed), 1 day each of protected contact and full contact introduction, post-introduction (1,3 weeks after introduction), and settled pairs (,20 weeks after introduction). One hundred and seventy-six hours of behavioral data and 672,hr of heart rate data were analyzed. Fecal cortisol was also measured for the baseline, post-introduction, and settled pair phases. All introductions were successful and subjects showed no physiological or behavioral signs of stress, such as increased heart rate, abnormal behavior, or psychological indices of distress (depressive/anxiety-related behavior). Agonism was minimal throughout the introduction process and over the subsequent months; only one wound was incurred over the course of the study. Levels of abnormal behaviors, psychological indices of distress, locomotion, inactivity, and affiliation showed improvements within several weeks after introduction; these changes were still present 5,9 months later for the latter two categories. Heart rates during introduction fell significantly in the settled pair phase, and also varied predictably with time of day. Fecal cortisol levels were lower in settled pairs than in single housing. The fact that reductions in abnormal behavior did not persist over the long term may have been confounded by increasing duration of time spent caged. The results of this study may be of practical use for designing and monitoring social introductions and suggest that managers should not dismiss the feasibility of successful pairing of adult male rhesus macaques. Am. J. Primatol. 70:542,550, 2008. © 2008 Wiley-Liss, Inc. [source]


Theoretical investigation of the cavity expansion problem based on a hypoplasticity model

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 5 2001
V. A. Osinov
Abstract The problem of the symmetric quasi-static large-strain expansion of a cavity in an infinite granular body is studied. The body is assumed to be dry or fully drained so that the presence of the pore water can be disregarded. Both spherical and cylindrical cavities are considered. Numerical solutions to the boundary value problem are obtained with the use of the hypoplastic constitutive relation calibrated for a series of granular soils. As the radius of the cavity increases, the stresses and the density on the cavity surface asymptotically approach limit values corresponding to a so-called critical state. For a given soil, the limit values depend on the initial stresses and the initial density. A comparison is made between the solutions for different initial states and different soils. Applications to geotechnical problems such as cone penetration test and pressuremeter test are discussed. Copyright © 2001 John Wiley & Sons, Ltd. [source]


A rational elasto-plastic spatially curved thin-walled beam element

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 3 2007
Yong-Lin Pi
Abstract Torsion is one of the primary actions in members curved in space, and so an accurate spatially curved-beam element needs to be able to predict the elasto-plastic torsional behaviour of such members correctly. However, there are two major difficulties in most existing finite thin-walled beam elements, such as in ABAQUS and ANSYS, which may lead to incorrect predictions of the elasto-plastic behaviour of members curved in space. Firstly, the integration sample point scheme cannot capture the shear strain and stress information resulting from uniform torsion. Secondly, the higher-order twists are ignored which leads to loss of the significant effects of Wagner moments on the large twist torsional behaviour. In addition, the initial geometric imperfections and residual stresses are significant for the elasto-plastic behaviour of members curved in space. Many existing finite thin-walled beam element models do not provide facilities to deal with initial geometric imperfections. Although ABAQUS and ANSYS have facilities for the input of residual stresses as initial stresses, they cannot describe the complicated distribution patterns of residual stresses in thin-walled members. Furthermore, external loads and elastic restraints may be applied remote from shear centres or centroids. The effects of the load (and restraint) positions are important, but are not considered in many beam elements. This paper presents an elasto-plastic spatially curved element with arbitrary thin-walled cross-sections that can correctly capture the uniform shear strain and stress information for integration, and includes initial geometric imperfections, residual stresses and the effects of the load and restraint positions. The element also includes elastic restraints and supports, which have to be modelled separately as spring elements in some other finite thin-walled beam elements. Comparisons with existing experimental and analytical results show that the elasto-plastic spatially curved-beam element is accurate and efficient. Copyright © 2006 John Wiley & Sons, Ltd. [source]


On the numerical treatment of initial strains in biological soft tissues

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 8 2006
E. Peña
Abstract In this paper, different methodologies to enforce initial stresses or strains in finite strain problems are compared. Since our main interest relies on the simulation of living tissues, an orthotropic hyperelastic constitutive model has been used to describe their passive material behaviour. Different methods are presented and discussed. Firstly, the initial strain distribution is obtained after deformation from a previously assumed to be known stress-free state using an appropriate finite element approach. This approach usually involves important mesh distortions. The second method consists on imposing the initial strain field from the definition of an initial incompatible ,deformation gradient' field obtained from experimental data. This incompatible tensor field can be imposed in two ways, depending on the origin of the experimental tests. In some cases as ligaments, the experiment is carried out from the stress-free configuration, while in blood vessels the starting point is usually the load-free configuration with residual stresses. So the strain energy function would remain the same for the whole simulation or redefined from the new origin of the experiment. Some validation and realistic examples are presented to show the performance of the strategies and to quantify the errors appearing in each of them. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Patterning Thin Film Mechanical Properties to Drive Assembly of Complex 3D Structures,

ADVANCED MATERIALS, Issue 24 2008
Noy Bassik
Thin films of metal and polymer are patterned with varying geometry, moduli, and initial stresses to fold into complex 3D structures. In the schematic (top) the rigid segments, flexible hinges, and hollow areas are visible. In the optical and fluorescent micrograph below, cells were cultured on the self-assembled structures, and fluoresce green as they are alive. [source]