Initial Cleavage (initial + cleavage)

Distribution by Scientific Domains


Selected Abstracts


Diradical-Promoted Two-Carbon Ring-Expansion Reactions by Thermal Isomerization: Synthesis of Functionalized Macrocyclic Ketones

HELVETICA CHIMICA ACTA, Issue 7 2004
Georg Rüedi
A new method for the smooth and highly efficient preparation of functionalized macrocyclic ketones has been developed. Pyrolysis of medium- and large-ring 3-vinylcycloalkanones by dynamic gas-phase thermo-isomerization (DGPTI) at 600,630° yielded, under insertion of a previously attached vinyl side chain by means of a 1,3-C shift, the corresponding ,,, -unsaturated cycloalkanones. The yield of the two-carbon ring-expanded ketones greatly depended on the relative ring strains of substrate and product (5,87%, cf. Table,5). The formation of minor amounts of one-carbon ring-expanded cycloalkenes (<10%) can be ascribed to a subsequent decarbonylation step. A reaction mechanism involving initial cleavage of the weakest single bond in the molecule has been established (cf. Scheme,6). Recombination within the generated diradical intermediate in terminal vinylogous position led to the observed products, while reclosure gave recovered starting material. Substituents on the vinyl moiety were transferred locospecifically into the ring-expanded products. An isopropenyl group did not significantly affect the isomerization process, whereas substrates bearing a prop-1-enyl group in , -position enabled competing intramolecular H-abstraction reactions, leading to acyclic dienones (cf. Schemes,9,11). DGPTI of the 13-membered analogue directly yielded 4-muscenone, which, upon hydrogenation, led to the valuable musk odorant (±)-muscone. Increasing the steric hindrance on the vinyl moiety gave rise to diminishing amounts of the desired ,,, -unsaturated cycloalkanones. This novel two-carbon ring-expansion protocol was also successfully applied to 3-ethynylcycloalkanones, giving rise to the corresponding ring-expanded cyclic allenes (cf. Scheme,13). [source]


Kinetics and mechanism of the oxidation of 4-methyl-3-thiosemicarbazide by acidic bromate,

INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, Issue 4 2002
Sreekantha B. Jonnalagadda
The oxidation of 4-methyl-3-thiosemicarbazide (MTSC) by bromate and bromine was studied in acidic medium. The stoichiometry of the reaction is extremely complex, and is dependent on the ratio of the initial concentrations of the oxidant to reductant. In excess MTSC and after prolonged standing, the stoichiometry was determined to be H3CN(H)CSN(H)NH2 + 3BrO3, , 2CO2 + NH4+ + SO42, + N2 + 3Br, + H+ (A). An interim stoichiometry is also obtained in which one of the CO2 molecules is replaced by HCOOH with an overall stoichiometry of 3H3CN(H)CSN(H)NH2 + 8BrO3, , CO2 + NH4+ + SO42, + HCOOH + N2 + 3Br, + 3H+ (B). Stoichiometry A and B are not very different, and so mixtures of the two were obtained. Compared to other oxidations of thiourea-based compounds, this reaction is moderately fast and is first order in both bromate and substrate. It is autocatalytic in HOBr. The reaction is characterized by an autocatalytic sigmoidal decay in the consumption of MTSC, while in excess bromate conditions the reaction shows an induction period before autocatalytic formation of bromine. In both cases, oxybromine chemistry, which involves the initial formation of the reactive species HOBr and Br2, is dominant. The reactions of MTSC with both HOBr and Br2 are fast, and so the overall rate of oxidation is dependent upon the rates of formation of these reactive species from bromate. Our proposed mechanism involves the initial cleavage of the CN bond on the azo-side of the molecule to release nitrogen and an activated sulfur species that quickly and rapidly rearranges to give a series of thiourea acids. These thiourea acids are then oxidized to the sulfonic acid before cleavage of the CS bond to give SO42,, CO2, and NH4+. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 237,247, 2002 [source]


A hybrid density functional theory study of the low-temperature dimethyl ether combustion pathways.

ISRAEL JOURNAL OF CHEMISTRY, Issue 2-3 2002
I: Chain-propagation
Dimethyl ether (DME) has been proposed to be a promising alternative to conventional diesel fuel because of its favorable compression ignition property (high cetane number) and its soot-free combustion. A radical chain mechanism for hydrocarbon autoignition has been proposed for DME at low temperatures. In this mechanism, the chain initiation step consists of DME undergoing hydrogen abstraction by a highly reactive species (typically ·OH). The CH3O·H2 created in the initiation step then combines with O2; the subsequent CH3OCH2OO· radical is involved in a Lindemann-type mechanism, which can lead to the production of formaldehyde (CH2 = O) and ·OH. This concludes the chain-propagating step: the one ·OH produced then sustains the chain-reaction by creating another CH3O·H2. A relatively stable intermediate (·CH2OCH2OOH), formed via isomerization of CH3OCH2OO· in the chain-propagation step, can combine with a second O2 to produce a radical (·OOCH2OCH2OOH) that can potentially decompose into two ·OH radical (and other products). This path leads to chain-branching and an exponential increase in the rate of DME oxidation. We have used spin-polarized density functional theory with the Becke-3-parameter Lee,Parr,Yang exchange-correlation functional to calculate the structures and energies of key reactants, intermediates, and products involved in (and competing with) the chain-propagating and chain-branching steps of low-temperature DME oxidation. In this article, Part I, we consider only the chain-propagation mechanism and its competing mechanisms for DME combustion. Here, we show that only certain conformers can undergo the isomerization to ·CH2OCH2OOH. A new transition state has been discovered for the disproportionation reaction ·CH2OCH2OOH , 2CH2O + ·OH in the chain-propagating step of DME autoignition that is much lower than previous barriers. The key to making this decomposition pathway facile is initial cleavage of the O,O rather than the C,O bond. This renders all transition states along the chain-propagation potential energy surface below the CH3O·H2 + O2 reactants. In contrast with the more well-studied CH3·H2 (ethyl radical) + O2 system, the H-transfer isomerization of CH3OCH2OO· to ·CH2OCH2OOH in low-temperature DME oxidation has a much lower activation energy. This is most likely due to the larger ring strain of the analogous transition state in ethane oxidation, which is a five-membered ring opposed to a six-membered ring in dimethyl ether oxidation. Thus low-temperature ethane oxidation is much less likely to form the ·ROOH (where R is a generic group) radicals necessary for chain-branching, which leads to autoignition. Three competing reactions are considered: CH3O·H2 , CH2O + ·CH3; ·CH2OCH2OOH , 1,3-dioxetane + ·OH; and ·CH2OCH2OOH , ethylene oxide + HOO·. The reaction barriers of all these competing paths are much higher in energy (7,10 kcal/mol) than the reactants CH3O·H2 + O2 and, therefore, are unlikely low-temperature paths. Interestingly, an analysis of the highest occupied molecular orbital along the CH3O·H2 decomposition path shows that electronically excited (1A2 or 3A2) CH2O can form; this can also be shown for ·CH2OCH2OOH, which forms two formaldehyde molecules. This may explain the luminosity of DME's low-temperature flames. [source]


013 Effect of UV on the susceptibility of acid-soluble Skh-1 hairless mouse collagen to collagenase

PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE, Issue 2 2002
J.M. Menter
To test the hypothesis that UV could alter collagen susceptibility to interstitial collagenase, acid-extracted Skh-1 hairless mouse collagen samples were (un)irradiated with 0,140 J/cm2 of radiation from bank of filtered FS lamp (UVB/UVA = 0.33, fluence rate = 0.81 mW/cm2). Subsequent to UV irradiation, collagen samples were coupled with fluorescein isothiocyanate (FITC) and assayed for its susceptibility to bacterial collagenase by monitoring the appearance of supernatant FITC fluorescence (a measure of lysed collagen) over time of incubation. As a reference. unirradiated commercial FITC , labeled collagen (Elastin Products) was similarly analyzed. Mouse collagen had a lower rate of cleavage than did the calf skin sample. Mouse collagen initial cleavage followed a quasi-linear time course over the first 5 h. Calf-skin collagen displayed a ,sigmoidal' time course, reminiscent of a cooperative mechanism. UV irradiation afforded no significant effect on the ability of collagenase to cleave mouse collagen, although a small effect could be discerned after 48 h (140 J/cm2). On the other hand, these samples exhibited significant chain degradation. cross-linking and loss of intrinsic collagen fluorescence on UV photolysis. It appears that the rate of cleavage depends on the superstructure of the collagen, and that the collagen fluorophores are not in proximity to the specific site of collagenase cleavage. Supported in part by NIH/MBRS Grant #GM 08248 and RCMI Grant #RR 03034. [source]