Inhibitory Neurons (inhibitory + neuron)

Distribution by Scientific Domains


Selected Abstracts


Effects of Ethanol on Persistent Activity and Up-States in Excitatory and Inhibitory Neurons in Prefrontal Cortex

ALCOHOLISM, Issue 12 2009
John J. Woodward
Background:, Elucidating mechanisms that underlie the neural actions of ethanol is critical for understanding how this drug affects behavior. Increasing evidence suggests that, in addition to mid-brain dopaminergic regions, higher cortical structures play an important role in the pathophysiology associated with alcohol abuse. Previous studies from this laboratory used a novel slice co-culture system to demonstrate that ethanol reduces network-dependent patterns of activity in excitatory pyramidal neurons of the prefrontal cortex (PFC). In the present study, we examine the effect of ethanol on the activity of fast-spiking (FS) interneurons, a sub-population of neurons critically involved in shaping cortical activity. Methods:, Slices containing the dorsolateral PFC were prepared from neonatal C57 mice and maintained in culture. After 2 to 3 weeks in vitro, whole-cell patch-clamp electrophysiology was used to monitor spontaneous episodes of persistent activity in prelimbic PFC neurons. In some experiments, the use-dependent NMDA receptor blocker, MK801, was included in the pipette recording solution to assess the contribution of NMDA receptors to up-states. Results:, MK801 reduced up-state amplitude and revealed underlying fast EPSPs in excitatory pyramidal neurons while having little effect on these parameters in FS interneurons. Despite this difference, ethanol (44 mM), significantly reduced up-state duration and up-state area in both pyramidal and FS interneurons. Conclusions:, These results suggest that ethanol reduces the activity of FS interneurons due to disruption of network-dependent activity. This would be expected to further impair the ability of PFC networks to carry out their normal function and may contribute to the adverse effects of ethanol on PFC-dependent behaviors. [source]


Ongoing Nicotinic And Non-Nicotinic Inputs To Inhibitory Neurons In The Mouse Colon

CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 10 2001
Andrew K Powell
SUMMARY 1. Intracellular microelectrodes were used to record spontaneous and evoked inhibitory junction potentials (IJP) from the circular muscle layer of the mid-distal region of the mouse isolated colon in the presence of nifedipine (1 ,mol/L) and hyoscine (1 ,mol/L). 2. The length of the tissue preparation (> 1 cm) or the presence of the mucosa had no effect on the frequency of spontaneous IJP. 3. Hexamethonium (500 ,mol/L) reduced the frequency of spontaneous IJP to approximately 70% of the control frequency, whereas D -tubocurarine (280 ,mol/L) reduced the frequency to approximately 17% of control. Apamin (250 nmol/L) abolished all spontaneous IJP activity. 4. The greater inhibition of spontaneous IJP in the presence of D -tubocurarine compared with hexamethonium is discussed as a possible ,apamin-like' effect. 5. Although electrically evoked IJP (single pulse at 15 V, 0.6 msec) were not significantly affected by hexamethonium, D -tubocurarine and apamin reduced the amplitude of evoked IJP to approximately 65 and 50% of control, respectively. 6. These results suggest that the properties of spontaneous IJP cannot be inferred by a study of evoked IJP alone. [source]


Sodium channel SCN1A and epilepsy: Mutations and mechanisms

EPILEPSIA, Issue 9 2010
Andrew Escayg
Summary Mutations in a number of genes encoding voltage-gated sodium channels cause a variety of epilepsy syndromes in humans, including genetic (generalized) epilepsy with febrile seizures plus (GEFS+) and Dravet syndrome (DS, severe myoclonic epilepsy of infancy). Most of these mutations are in the SCN1A gene, and all are dominantly inherited. Most of the mutations that cause DS result in loss of function, whereas all of the known mutations that cause GEFS+ are missense, presumably altering channel activity. Family members with the same GEFS+ mutation often display a wide range of seizure types and severities, and at least part of this variability likely results from variation in other genes. Many different biophysical effects of SCN1A -GEFS+ mutations have been observed in heterologous expression systems, consistent with both gain and loss of channel activity. However, results from mouse models suggest that the primary effect of both GEFS+ and DS mutations is to decrease the activity of GABAergic inhibitory neurons. Decreased activity of the inhibitory circuitry is thus likely to be a major factor contributing to seizure generation in patients with GEFS+ and DS, and may be a general consequence of SCN1A mutations. [source]


Role of GABAA inhibition in modulation of pyramidal tract neuron activity during postural corrections

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2007
Zinaida A. Tamarova
Abstract In a previous study we demonstrated that the activity of pyramidal tract neurons (PTNs) of the motor cortex is modulated in relation to postural corrections evoked by periodical tilts of the animal. The modulation included an increase in activity in one phase of the tilt cycle and a decrease in the other phase. It is known that the motor cortex contains a large population of inhibitory GABAergic neurons. How do these neurons participate in periodic modulation of PTNs? The goal of this study was to investigate the role of GABAA inhibitory neurons of the motor cortex in the modulation of postural-related PTN activity. Using extracellular electrodes with attached micropipettes, we recorded the activity of PTNs in cats maintaining balance on a tilting platform both before and after iontophoretic application of the GABAA receptor antagonists gabazine or bicuculline. The tilt-related activity of 93% of PTNs was affected by GABAA receptor antagonists. In 88% of cells, peak activity increased by 75 ± 50% (mean ± SD). In contrast, the trough activity changed by a much smaller value and almost as many neurons showed a decrease as showed an increase. In 73% of the neurons, the phase position of the peak activity did not change or changed by no more than 0.1 of a cycle. We conclude that the GABAergic system of the motor cortex reduces the posture-related responses of PTNs but has little role in determining their response timing. [source]


Promoting directional axon growth from neural progenitors grafted into the injured spinal cord

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 6 2010
Joseph F. Bonner
Abstract Spinal cord injury (SCI) is a devastating condition characterized by disruption of axonal connections, failure of axonal regeneration, and loss of motor and sensory function. The therapeutic promise of neural stem cells has been focused on cell replacement, but many obstacles remain in obtaining neuronal integration following transplantation into the injured CNS. This study investigated the neurotransmitter identity and axonal growth potential of neural progenitors following grafting into adult rats with a dorsal column lesion. We found that using a combination of neuronal and glial restricted progenitors (NRP and GRP) produced graft-derived glutamatergic and GABAergic neurons within the injury site, with minimal axonal extension. Administration of brain-derived neurotrophic factor (BDNF) with the graft promoted modest axonal growth from grafted cells. In contrast, injecting a lentiviral vector expressing BDNF rostral into the injured area generated a neurotrophin gradient and promoted directional growth of axons for up to 9 mm. Animals injected with BDNF lentivirus (at 2.5 and 5.0 mm) showed significantly more axons and significantly longer axons than control animals injected with GFP lentivirus. However, only the 5.0-mm-BDNF group showed a preference for extension in the rostral direction. We concluded that NRP/GRP grafts can be used to produce excitatory and inhibitory neurons, and neurotrophin gradients can guide axonal growth from graft-derived neurons toward putative targets. Together they can serve as a building block for neuronal cell replacement of local circuits and formation of neuronal relays. © 2009 Wiley-Liss, Inc. [source]


Diabetes and the enteric nervous system

NEUROGASTROENTEROLOGY & MOTILITY, Issue 12 2007
B. Chandrasekharan
Abstract, Diabetes is associated with several changes in gastrointestinal (GI) motility and associated symptoms such as nausea, bloating, abdominal pain, diarrhoea and constipation. The pathogenesis of altered GI functions in diabetes is multifactorial and the role of the enteric nervous system (ENS) in this respect has gained significant importance. In this review, we summarize the research carried out on diabetes-related changes in the ENS. Changes in the inhibitory and excitatory enteric neurons are described highlighting the role of loss of inhibitory neurons in early diabetic enteric neuropathy. The functional consequences of these neuronal changes result in altered gastric emptying, diarrhoea or constipation. Diabetes can also affect GI motility through changes in intestinal smooth muscle or alterations in extrinsic neuronal control. Hyperglycaemia and oxidative stress play an important role in the pathophysiology of these ENS changes. Antioxidants to prevent or treat diabetic GI motility problems have therapeutic potential. Recent research on the nerve,immune interactions demonstrates inflammation-associated neurodegeneration which can lead to motility related problems in diabetes. [source]


Distribution of prospective glutamatergic, glycinergic, and GABAergic neurons in embryonic and larval zebrafish

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 1 2004
Shin-Ichi Higashijima
Abstract Zebrafish are an excellent model for studies of the functional organization of neuronal circuits, but little is known regarding the transmitter phenotypes of the neurons in their nervous system. We examined the distribution in spinal cord and hindbrain of neurons expressing markers of transmitter phenotype, including the vesicular glutamate transporter (VGLUT) genes for glutamatergic neurons, the neuronal glycine transporter (GLYT2) for glycinergic neurons, and glutamic acid decarboxylase (GAD65/67) for GABAergic neurons. All three markers were expressed in a large domain in the dorsal two-thirds of spinal cord, with additional, more ventral expression domains for VGLUT2 and GAD/GABA. In the large dorsal domain, dual in situ staining showed that GLYT2 -positive cells were intermingled with VGLUT2 cells, with no dual-stained neurons. Many of the neurons in the dorsal expression domain that were positive for GABA markers at embryonic stages were also positive for GLYT2, suggesting that the cells might use both GABA and glycine, at least early in their development. The intermingling of neurons expressing inhibitory and excitatory markers in spinal cord contrasted markedly with the organization in hindbrain, where neurons expressing a particular marker were clustered together to form stripes that were visible running from rostral to caudal in horizontal sections and from dorsomedial to ventrolateral in cross sections. Dual labeling showed that the stripes of neurons labeled with one transmitter marker alternated with stripes of cells labeled for the other transmitter phenotypes. The differences in the distribution of excitatory and inhibitory neurons in spinal cord versus hindbrain may be tied to differences in their patterns of development and functional organization. J. Comp. Neurol. 480:1,18, 2004. © 2004 Wiley-Liss, Inc. [source]


Colocalization of GABA and glycine in the ventral nucleus of the lateral lemniscus in rat: An in situ hybridization and semiquantitative immunocytochemical study

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 4 2001
Raquel Riquelme
Abstract We have studied by in situ hybridization for GAD65 mRNA in thick sections and by semiquantitative postembedding immunocytochemistry in consecutive semithin sections, the expression of ,-aminobutyric acid (GABA) and glycine in cell bodies and axosomatic puncta of the rat ventral nucleus of the lateral lemniscus (VNLL), a prominent monaural brainstem auditory structure. The in situ hybridization and the densitometric analysis of the immunostaining suggest that the rat VNLL contains two main populations of neurons. Approximately one-third of neurons are unstained with either technique and are presumably excitatory; their cell bodies are enveloped by a large number of glycine-immunoreactive puncta. Most if not all of the remaining two-thirds colocalize GABA and glycine and are assumed to be inhibitory. These two populations show a complementary distribution within the VNLL, with inhibitory neurons located mainly ventrally and excitatory neurons dorsally. In scatterplots of gray values measured from cell bodies, the double-labeled cells appear to form a single cluster in terms of their staining intensities for the two transmitter candidates. However, this cluster may have to be further subdivided because cells with extreme GABA/glycine ratios differ from those with average ratios with respect to location or size. The VNLL seems unique among auditory structures by its large number of neurons that colocalize GABA and glycine. Although the functional significance of this colocalization remains unknown, our results suggest that the VNLL exerts convergent excitatory and inhibitory influences over the inferior colliculus, which may underlie the timing processing in the auditory midbrain. J. Comp. Neurol. 432:409,424, 2001. © 2001 Wiley-Liss, Inc. [source]


Synapses on NG2-expressing progenitors in the brain: multiple functions?

THE JOURNAL OF PHYSIOLOGY, Issue 16 2008
Vittorio Gallo
Progenitor cells expressing the proteoglycan NG2 represent approximately 5% of the total cells in the adult brain, and are found both in grey and white matter regions where they give rise to oligodendrocytes. The finding that these cells receive synaptic contacts from excitatory and inhibitory neurons has not only raised major interest in the possible roles of these synapses, but also stimulated further research on the developmental and cellular functions of NG2-expressing (NG2+) progenitors themselves in the context of neural circuit physiology. Here we review recent findings on the functional properties of the synapses on NG2+ cells in grey and white matter regions of the brain. In this review article we make an attempt to integrate current knowledge on the cellular and developmental properties of NG2+ progenitors with the functional attributes of their synapses, in order to understand the physiological relevance of neuron,NG2+ progenitor signal transmission. We propose that, although NG2+ progenitors receive synaptic contact in all brain regions where they are found, their synapses might have different developmental and functional roles, probably reflecting the distinct functions of NG2+ progenitors in the brain. [source]


N-methyl-D-aspartate receptor expression in parvalbumin-containing inhibitory neurons in the prefrontal cortex in bipolar disorder

BIPOLAR DISORDERS, Issue 1 2010
Byron KY Bitanihirwe
Bitanihirwe BKY, Lim MP, Woo T-UW. N-methyl-D-aspartate receptor expression in parvalbumin-containing inhibitory neurons in the prefrontal cortex in bipolar disorder. Bipolar Disord 2010: 12: 95,101. © 2010 The Authors. Journal compilation © 2010 John Wiley & Sons A/S. Objectives:, Inhibitory neural circuits and the glutamatergic regulation of these circuits in the cerebral cortex appear to be disturbed in bipolar disorder. In this study, we addressed the hypothesis that, in the prefrontal cortex (PFC), disturbances of glutamatergic regulation of the class of inhibitory neurons that contain the calcium buffer parvalbumin (PV) via N-methyl-D-aspartate (NMDA) receptor may contribute to the pathophysiology of bipolar disorder. Methods:, We used double in situ hybridization with a sulfur-35-labeled riboprobe for the NR2A subunit of the NMDA receptor and a digoxigenin-labeled riboprobe for PV in a cohort of 18 subjects with bipolar disorder and 18 demographically matched normal control subjects. Results:, We observed no differences in the relative density and laminar distribution of the PV-expressing neurons between subjects with bipolar disorder and matched normal control subjects. Furthermore, the density of the PV neurons that co-expressed NR2A messenger RNA (mRNA) or the cellular expression of NR2A mRNA in the PV neurons that exhibited a detectable level of this transcript was unaltered in subjects with bipolar disorder. Conclusions:, These findings suggest that, in the PFC, glutamatergic regulation of PV-containing inhibitory neurons via NR2A-containing NMDA receptors does not appear to be altered in bipolar disorder. However, the possibility that other subsets of ,-aminobutyric acid (GABA) neurons or other glutamate receptor subtypes are affected cannot be excluded. [source]