Home About us Contact | |||
Inherited Predisposition (inherited + predisposition)
Selected AbstractsMolecular characterization of the spectrum of genomic deletions in the mismatch repair genes MSH2, MLH1, MSH6, and PMS2 responsible for hereditary nonpolyposis colorectal cancer (HNPCC)GENES, CHROMOSOMES AND CANCER, Issue 2 2005Heleen van der Klift A systematic search by Southern blot analysis in a cohort of 439 hereditary nonpolyposis colorectal cancer (HNPCC) families for genomic rearrangements in the main mismatch repair (MMR) genes, namely, MSH2, MLH1, MSH6, and PMS2, identified 48 genomic rearrangements causative of this inherited predisposition to colorectal cancer in 68 unrelated kindreds. Twenty-nine of the 48 rearrangements were found in MSH2, 13 in MLH1, 2 in MSH6, and 4 in PMS2. The vast majority were deletions, although one previously described large inversion, an intronic insertion, and a more complex rearrangement also were found. Twenty-four deletion breakpoints have been identified and sequenced in order to determine the underlying recombination mechanisms. Most fall within repetitive sequences, mainly Alu repeats, in agreement with the differential distribution of deletions between the MSH2 and MLH1 genes: the higher number and density of Alu repeats in MSH2 corresponded with a higher incidence of genomic rearrangement at this disease locus when compared with other MMR genes. Long interspersed nuclear element (LINE) repeats, relatively abundant in, for example, MLH1, did not seem to contribute to the genesis of the deletions, presumably because of their older evolutionary age and divergence among individual repeat units when compared with short interspersed nuclear element (SINE) repeats, including Alu repeats. Moreover, Southern blot analysis of the introns and the genomic regions flanking the MMR genes allowed us to detect 6 novel genomic rearrangements that left the coding region of the disease-causing gene intact. These rearrangements comprised 4 deletions upstream of the coding region of MSH2 (3 cases) and MSH6 (1 case), a 2-kb insertion in intron 7 of PMS2, and a small (459-bp) deletion in intron 13 of MLH1. The characterization of these genomic rearrangements underlines the importance of genomic deletions in the etiology of HNPCC and will facilitate the development of PCR-based tests for their detection in diagnostic laboratories. © 2005 Wiley-Liss, Inc. [source] Beta2-microglobulin mutations in microsatellite unstable colorectal tumorsINTERNATIONAL JOURNAL OF CANCER, Issue 2 2007Matthias Kloor Abstract Defects of DNA mismatch repair (MMR) cause the high level microsatellite instability (MSI-H) phenotype. MSI-H cancers may develop either sporadically or in the context of the hereditary nonpolyposis colorectal cancer (HNPCC) syndrome that is caused by germline mutations of MMR genes. In colorectal cancer (CRC), MSI-H is characterized by a dense lymphocytic infiltration, reflecting a high immunogenicity of these cancers. As a consequence of immunoselection, MSI-H CRCs frequently display a loss of human leukocyte antigen (HLA) class I antigen presentation caused by mutations of the ,2 -microglobulin (,2m) gene. To examine the implications of ,2m mutations during MSI-H colorectal tumor development, we analyzed the prevalence of ,2m mutations in MSI-H colorectal adenomas (n = 38) and carcinomas (n = 104) of different stages. Mutations were observed in 6/38 (15.8%) MSI-H adenomas and 29/104 (27.9%) MSI-H CRCs. A higher frequency of ,2m mutations was observed in MSI-H CRC patients with germline mutations of MMR genes MLH1 or MSH2 (36.4%) compared with patients without germline mutations (15.4%). The high frequency of ,2m mutations in HNPCC-associated MSI-H CRCs is in line with the hypothesis that immunoselection may be particularly pronounced in HNPCC patients with inherited predisposition to develop MSI-H cancers. ,2m mutations were positively related to stage in tumors without distant metastases (UICC I-III), suggesting that loss of ,2m expression may promote local progression of colorectal MSI-H tumors. However, no ,2m mutations were observed in metastasized CRCs (UICC stage IV, p = 0.04). These results suggest that functional ,2m may be necessary for distant metastasis formation in CRC patients. © 2007 Wiley-Liss, Inc. [source] The genetics of inflammatory bowel diseaseALIMENTARY PHARMACOLOGY & THERAPEUTICS, Issue 6 2001T. Ahmad Recent epidemiological, clinical and molecular studies have provided strong evidence that inherited predisposition is important in the pathogenesis of chronic inflammatory bowel diseases. The model most consistent with the epidemiological data suggests that Crohn's disease and ulcerative colitis are related polygenic diseases, sharing some but not all susceptibility genes. Investigators throughout the world have applied the complementary techniques of genome-wide scanning and candidate gene analysis. Four areas of linkage have been widely replicated on chromosomes 16 (IBD1), 12 (IBD2), 6 (IBD3,the HLA region), and most recently on chromosome 14. Fine mapping of these regions is underway. Of the ,positional' candidate genes, most attention has centred on the genes of the major histocompatibility complex. Genes within this region may determine disease susceptibility, behaviour, complications and response to therapy. Hope continues that studies of inflammatory bowel disease genetics will provide fresh insight into disease pathogenesis and soon deliver clinical applications. [source] Analysis of BRCA1 and BRCA2 in breast and breast/ovarian cancer families shows population substructure in the Iberian peninsulaANNALS OF HUMAN GENETICS, Issue 1 2002A. VEGA An estimated 5,10% of all breast and ovarian cancers are due to an inherited predisposition, representing a rather large number of patients. In Spain 1/13,1/14 women will be diagnosed with breast cancer during their lifetime. Two major breast cancer genes, BRCA1 and BRCA2, have been identified. To date, several hundred pathogenic mutations in these two genes have been published or reported to the Breast Cancer Information Core, BIC database (http://www.nhgri.nih.gov/Intramural_research_Labtransfer/Bic/index.html). In the present study, 30 Spanish breast and breast/ovarian cancer families (29 from Galicia, NW Spain, and 1 from Catalonia, NE Spain) were screened for mutations in the BRCA1 and BRCA2 genes. The analysis of these genes was carried out by SSCP for shorter exons and direct sequencing in the case of longer ones. Mutations were found in 8 of the 30 families studied (26.66%). It is important to note that all mutations were detected within the BRCA1 gene: 330 A>G, 910_913delGTTC, 2121 C>T, 3958_3962delCTCAGinsAGGC, and 5530 T>A. The BRCA1 330 A>G mutation was found in four unrelated families and accounted for 50% of all identified mutations. [source] Association of a polymorphism at the 5,-region of the angiotensin II type 1 receptor with hypertensionANNALS OF HUMAN GENETICS, Issue 3 2000N. TAKAHASHI Molecular variants of individual components of the renin-angiotensin system are thought to contribute to inherited predisposition towards essential hypertension. Using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and sequence analysis, we identified seven polymorphisms in the 5,-flanking region of the angiotensin II type 1 receptor (AGTR1/AT1) gene. We conducted a case-control study in a sample from the Japanese population to determine whether polymorphic markers in the 5,-flanking region of the AT1gene were associated with essential hypertension. The study compared 149 hypertensive subjects to 156 normotensive control subjects. A significantly higher frequency of the AT1(,535)*T allele was observed in hypertensive subjects. Evidence was obtained that the AT1(,535)*T allele showed a synergistic effect on risk of hypertension with angiotensin I converting enzyme D allele (ACE*D). [source] Renal carcinogenesis: Genotype, phenotype and dramatypeCANCER SCIENCE, Issue 2 2003Okio Hino Cancer is a heritable disorder of somatic cells. Environment and heredity are both important in the carcinogenic process. The Eker rat model of hereditary renal carcinoma (RC) is an example of a Mendelian dominantly inherited predisposition to a specific cancer in an experimental animal. Forty years after the discovery of the Eker rat in Oslo, we and Knudson's group independently identified a germline retrotransposon insertion in the rat homologue of the human tuberous sclerosis (TSC2) gene. To our knowledge, this was the first isolation of a Mendelian dominantly predisposing cancer gene in a naturally occurring animal model. Recently, we discovered a new hereditary renal carcinoma in the rat. This rat was named the "Ninon''rat and its predisposing (Nihon) gene could be a novel renal tumor suppressor gene. This article will review the utility of these unique models for the study of problems in carcinogenesis; e.g., species-specific differences in tumorigenesis, cell stage and tissue/cell-type specific tumorigene-sis, multistep carcinogenesis, modifier gene(s) in renal carcinogenesis, cancer prevention and the development of therapeutic treatments which can be translated to human patients, as well as how environmental factors interact with cancer susceptibility gene(s). (Cancer Sci 2003; 94: 142,147) [source] |