Home About us Contact | |||
Inherited Mental Retardation (inherited + mental_retardation)
Selected AbstractsClosely linked cis -acting modifier of expansion of the CGG repeat in high risk FMR1 haplotypes,HUMAN MUTATION, Issue 12 2007S. Ennis Abstract In its expanded form, the fragile X triplet repeat at Xq27.3 gives rise to the most common form of inherited mental retardation, fragile X syndrome. This high population frequency persists despite strong selective pressure against mutation-bearing chromosomes. Males carrying the full mutation rarely reproduce and females heterozygous for the premutation allele are at risk of premature ovarian failure. Our diagnostic facility and previous research have provided a large databank of X chromosomes that have been tested for the FRAXA allele. Using this resource, we have conducted a detailed genetic association study of the FRAXA region to determine any cis -acting factors that predispose to expansion of the CGG triplet repeat. We have genotyped SNP variants across a 650-kb tract centered on FRAXA in a sample of 877 expanded and normal X chromosomes. These chromosomes were selected to be representative of the haplotypic diversity encountered in our population. We found expansion status to be strongly associated with a ,50-kb region proximal to the fragile site. Subsequent detailed analyses of this region revealed no specific genetic determinants for the whole population. However, stratification of chromosomes by risk subgroups enabled us to identify a common SNP variant which cosegregates with the subset of D group haplotypes at highest risk of expansion (,=17.84, p=0.00002). We have verified that this SNP acts as a marker of repeat expansion in three independent samples. Hum Mutat 28(12), 1216,1224, 2007. © 2007 Wiley-Liss, Inc. [source] Fragile X mental retardation protein is required for chemically-induced long-term potentiation of the hippocampus in adult miceJOURNAL OF NEUROCHEMISTRY, Issue 3 2009Yuze Shang Abstract Fragile X syndrome (FXS), a common form of inherited mental retardation, is caused by the lack of fragile X mental retardation protein (FMRP). The animal model of FXS, Fmr1 knockout mice, have deficits in the Morris water maze and trace fear memory tests, showing impairment in hippocampus-dependent learning and memory. However, results for synaptic long-term potentiation (LTP), a key cellular model for learning and memory, remain inconclusive in the hippocampus of Fmr1 knockout mice. Here, we demonstrate that FMRP is required for glycine induced LTP (Gly-LTP) in the CA1 of hippocampus. This form of LTP requires activation of post-synaptic NMDA receptors and metabotropic glutamateric receptors, as well as the subsequent activation of extracellular signal-regulated kinase (ERK) 1/2. However, paired-pulse facilitation was not affected by glycine treatment. Genetic deletion of FMRP interrupted the phosphorylation of ERK1/2, suggesting the possible role of FMRP in the regulation of the activity of ERK1/2. Our study provide strong evidences that FMRP participates in Gly-LTP in the hippocampus by regulating the phosphorylation of ERK1/2, and that improper regulation of these signaling pathways may contribute to the learning and memory deficits observed in FXS. [source] Protective effects of melatonin against oxidative stress in Fmr1 knockout mice: a therapeutic research model for the fragile X syndromeJOURNAL OF PINEAL RESEARCH, Issue 2 2009Yanina Romero-Zerbo Abstract:, Fragile X syndrome is the most common form of inherited mental retardation. It is typically caused by a mutation of the Fragile X mental-retardation 1 (Fmr1) gene. To better understand the role of the Fmr1 gene and its gene product, the fragile X mental-retardation protein in central nervous system functions, an fmr1 knockout mouse that is deficient in the fragile X mental-retardation protein was bred. In the present study, fragile X mental retardation 1-knockout and wild-type mice are used to determine behaviour and oxidative stress alterations, including reduced glutathione, oxidized glutathione and thiobarbituric acid-reactive substances, before and after chronic treatment with melatonin or tianeptine. Reduced glutathione levels were reduced in the brain of fmr1-knockout mice and chronic melatonin treatment normalized the glutathione levels compared with the control group. Lipid peroxidation was elevated in brain and testes of fmr1-knockout mice and chronic melatonin treatment prevents lipid peroxidation in both tissues. Interestingly, chronic treatment with melatonin alleviated the altered parameters in the fmr1-knockout mice, including abnormal context-dependent exploratory and anxiety behaviours and learning abnormalities. Chronic treatment with tianeptine (a serotonin reuptake enhancer) did not normalize the behaviour in fmr1-knockout mice. The prevention of oxidative stress in the fragile X mouse model, by an antioxidant compound such as melatonin, emerges as a new and promising approach for further investigation on treatment trials for the disease. [source] Genetic variation of the FMR1 gene among four Mexican populations: Mestizo, Huichol, Purepecha, and TarahumaraAMERICAN JOURNAL OF HUMAN BIOLOGY, Issue 3 2008Patricio Barros-Núñez Fragile X syndrome is the most common cause of inherited mental retardation; it is caused by expansion of CGG repeats in the first exon of the FMR1 gene. The number of CGG repeats varies between 6 and 50 triplets in normal individuals; the most common alleles have 29 or 30 repeats. Allelic patterns in the global populations are similar; however; some reports show statistical differences among several populations. In Mexico, except by a single report on a western Mestizo population, the allelic frequencies of the FMR1 gene are unknown. In this study, we analyze 207, 140, 138, and 40 chromosomes from Mestizos, Tarahumaras, Huichols, and Purepechas respectively. After PCR amplification on DNA modified by sodium bisulfite treatment, molecular analysis of the FMR1 gene showed 30 different alleles among the 525 chromosomes evaluated. Trinucleotide repeat number in the different Mexican populations varied from 15 to 87, with modal numbers of 32 and 30 in Mestizos and Tarahumaras, 29 and 32 in Purepechas and 30 among Huichols. Together, these allelic patterns differ significantly from those reported for Caucasian, Chinese, African, Indonesian, Brazilian, and Chilean populations. The increased number of the unusual allele of 32 repeats observed in the Mexican mestizo population can be explained from its frequency in at least two Mexican native populations. Am. J. Hum. Biol., 2008. © 2008 Wiley-Liss, Inc. [source] |