Inbreeding Effects (inbreeding + effects)

Distribution by Scientific Domains


Selected Abstracts


Inbreeding Effects on Hatchery and Growout Performance of Pacific White Shrimp, Penaeus (Litopenaeus) vannamei

JOURNAL OF THE WORLD AQUACULTURE SOCIETY, Issue 4 2008
Dustin R Moss
In animal breeding programs, selection coupled with a narrow genetic base can cause high levels of inbreeding to occur rapidly (in one or two generations). Although the effects of inbreeding have been studied extensively in terrestrial animals and to a lesser extent in aquaculture species, little is known about the effects of inbreeding on penaeid shrimp. The objective of this study was to investigate the effects of inbreeding on hatchery and growout performance of the Pacific white shrimp, Penaeus vannamei. The experiment was conducted over 2 yr, and data from two successive generations (G2 and G3) of inbred (sibling,sibling mating) and outbred families were analyzed. There were 11 inbred and 12 outbred families in G2 and 9 inbred and 10 outbred families in G3. Inbreeding coefficients (F) for outbred and inbred families were 0.00 and 0.25, respectively, for G2 and 0.00 and 0.375, respectively, for G3. Growth rates for outbreds and inbreds were similar in both G2 and G3. Hatch rate for inbred families was 33.1% lower than for outbred families in G2 and 47.1% lower in G3. Inbreeding depression (IBD) (relative change in phenotype per 0.1 increase in F) ± 95% CI for hatch rate was ,12.3 ± 10.1%. Hatchery survival for inbred families was 31.4% lower than for outbred families in G2 and 38.8% lower in G3. IBD for hatchery survival was ,11.0 ± 5.7%. Growout survival was 1.9% lower for inbred families than for outbred families in G2 and 19.6% lower in G3. IBD for growout survival was ,3.8 ± 2.9%. There was also a significant linear relationship between IBD estimates for survival traits and mean outbred survival. At high outbred survival, IBD was low (e.g., growout survival in G2), but IBD appeared to become more severe when outbred survival was lower. This suggests that stress (related to environment and/or life stage) may worsen IBD for survival traits. Results also indicate that moderate to high levels of inbreeding (>10%) should be avoided in commercial shrimp hatcheries because the cumulative effect of IBD on hatch rate and hatchery survival will significantly reduce postlarvae production. Thus, IBD can be significant enough to justify the use of inbreeding as a germplasm protection strategy (under certain scenarios) for genetic improvement programs. [source]


Heritability of morphophysiological traits and inbreeding effects in grazing-type lucerne

PLANT BREEDING, Issue 2 2005
L. Pecetti
Abstract To estimate heritability and inbreeding in grazing-type lucerne, 14 parent genotypes and their half-sib and selfed progeny were grown under spaced-plant conditions. Dry-matter weight (four cuts), plant height, basal plant diameter, stem density, and late-autumn vegetation were recorded on a plant basis. Genetic coefficients of variation for the three germplasm groups, and broad-sense heritability on a plot basis for parents were computed from variance component estimates; narrow-sense heritability was estimated from progeny-parent regression. Genetic variation was generally greater among selfed than half-sib progeny. Broad-sense heritability was high, while narrow-sense heritability was much lower for all traits except plant diameter. Inbreeding effects, assessed with comparison between parents and selfed progeny, were notable for plant weight and late-autumn vegetation only. The high correlation coefficients computed between parents and either progeny suggested the equivalent value of self- and polycross-progeny tests for selecting superior parents. [source]


Stress Resistance and Environmental Dependency of Inbreeding Depression in Drosophila melanogaster

CONSERVATION BIOLOGY, Issue 4 2000
Jesper Dahlgaard
Two important issues are whether stress and inbreeding effects are independent as opposed to synergistic, and whether inbreeding effects are general across stresses as opposed to stress-specific. We found that inbreeding reduced resistance to acetone and desiccation in adult Drosophila melanogaster, whereas resistance to knockdown heat stress was not affected. Inbred flies, however, experienced a greater proportional decrease in productivity than outbreds following heat stress. Correlations using line means indicated that all resistance traits were uncorrelated in the inbred as well as in the outbred flies. Recessive, deleterious alleles therefore did not appear to have any general deleterious effects on stress resistance. Inbreeding within a specific environment and selection for resistant genotypes may therefore purge a population of deleterious genes specific to only one environmental stress. Resumen: Tanto la endogamia como el estrés ambiental pueden tener efectos adversos sobre la adaptabilidad afectando la conservación de especies en peligro de extinción. Dos temas importantes son determinar si los efectos del estrés y la endogamia son independientes en lugar de ser sinérgicos, y determinar si los efectos de la endogamia son generales para distintos tipos de estrés o si son específicos para un tipo determinado de estrés. Encontramos que la endogamia reduce la resistencia a la acetona y la desecación en adultos de Drosophila melanogaster, mientras que la resistencia al efecto demoledor del estrés por calor no fue afectada. Sin embargo, las moscas endogámicas experimentaron una disminución proporcionalmente mayor en la productividad que aquellas moscas sin endogamia después de experimentar un estrés por calor. Las correlaciones obtenidas usando líneas medias indicaron que las características de resistencia no estuvieron correlacionadas ni en moscas con endogamia, ni en moscas sin ella. Aparentemente los alelos nocivos recesivos no tuvieron ningún efecto nocivo general en la resistencia al estrés. La endogamia dentro de un ambiente específico y la selección por genotipos resistentes podrían, por lo tanto, eliminar una población de genes nocivos específicos a un solo estrés ambiental. [source]


LOCAL HETEROZYGOSITY-FITNESS CORRELATIONS WITH GLOBAL POSITIVE EFFECTS ON FITNESS IN THREESPINE STICKLEBACK

EVOLUTION, Issue 8 2006
Mélissa Lieutenant-Gosselin
Abstract The complex interactions between genetic diversity and evolution have important implications in many biological areas including conservation, speciation, and mate choice. A common way to study these interactions is to look at heterozygosity-fitness correlations (HFCs). Until recently, HFCs based on noncoding markers were believed to result primarily from global inbreeding effects. However, accumulating theoretical and empirical evidence shows that HFCs may often result from genes being linked to the markers used (local effect). Moreover, local effect HFCs could differ from global inbreeding effects in their direction and occurrence. Consequently, the investigation of the structure and consequences of local HFCs is emerging as a new important goal in evolutionary biology. In this study of a wild threespine stickleback (Gasterosteus aculeatus) population, we first tested the presence of significant positive or negative local effects of heterozygosity at 30 microsatellites loci on five fitness components: survival, mating success, territoriality, length, and body condition. Then, we evaluated the direction and shape of total impact of local HFCs, and estimated the magnitude of the impacts on fitness using regression coefficients and selection differentials. We found that multilocus heterozygosity was not a reliable estimator of individual inbreeding coefficient, which supported the relevance of single-locus based analyses. Highly significant and temporally stable local HFCs were observed. These were mainly positive, but negative effects of heterozygosity were also found. Strong and opposite effects of heterozygosity are probably present in many populations, but may be blurred in HFC analyses looking for global effects only. In this population, both negative and positive HFCs are apparently driving mate preference by females, which is likely to contribute to the maintenance of both additive and nonadditive genetic variance. [source]


Heritability of morphophysiological traits and inbreeding effects in grazing-type lucerne

PLANT BREEDING, Issue 2 2005
L. Pecetti
Abstract To estimate heritability and inbreeding in grazing-type lucerne, 14 parent genotypes and their half-sib and selfed progeny were grown under spaced-plant conditions. Dry-matter weight (four cuts), plant height, basal plant diameter, stem density, and late-autumn vegetation were recorded on a plant basis. Genetic coefficients of variation for the three germplasm groups, and broad-sense heritability on a plot basis for parents were computed from variance component estimates; narrow-sense heritability was estimated from progeny-parent regression. Genetic variation was generally greater among selfed than half-sib progeny. Broad-sense heritability was high, while narrow-sense heritability was much lower for all traits except plant diameter. Inbreeding effects, assessed with comparison between parents and selfed progeny, were notable for plant weight and late-autumn vegetation only. The high correlation coefficients computed between parents and either progeny suggested the equivalent value of self- and polycross-progeny tests for selecting superior parents. [source]