Home About us Contact | |||
In Vitro Study (in + vitro_study)
Selected AbstractsCavitation versus Degassing: In Vitro Study of the Microbubble Phenomenon Observed During Echocardiography in Patients with Mechanical Prosthetic Cardiac ValvesECHOCARDIOGRAPHY, Issue 7 2002Grégoire Girod M.D. Background: With the advent of second harmonic imaging in echocardiography, microbubbles have been observed during opening and closure of mechanical prosthetic valves. The single phenomenon of cavitation, an extremely short event described in the literature, cannot explain the persistence of microbubbles during several hundred milliseconds. Therefore, in vitro we reproduced two distinct phenomena created by a local depression occurring during the closure and/or opening of prosthetic valves: Cavitation and degassing. Methods: We used a water circuit system enriched with CO2 that passes through a Venturi tube in order to create variable pressure gradients. Three types of observations were performed: (1) the dimensions of the bubbles as a function of pressure, (2) calibration of the echocardiograph, and (3) comparison and illustrations of the difference between bubble formation by cavitation (vaporization) and degassing (liberation of CO2). Results: According to the different pressures exerted, the dimensions of the bubbles only vary by several microns, not measurable in practice. Second, the calibration of the echocardiograph reveals that the dimensions of the bubbles measured by ultrasound are greater by a factor of 1.75. Finally, the observed cavitation is a short phenomenon (several milliseconds) and happens under a great local pressure gradient. The degassing produces microbubbles lasting up to as long as > 1 second under much lower pressure. Conclusion: This in vitro study suggests that microbubbles observed during several hundred milliseconds after the opening of prosthetic cardiac valves are the result of degassing of CO2 in blood rather than a cavitation phenomenon as suggested in the literature. [source] A New Approach for Adipose Tissue Regeneration Based on Human Mesenchymal Stem Cells in Contact to Hydrogels,an In Vitro Study,ADVANCED ENGINEERING MATERIALS, Issue 10 2009Kirsten Peters In this study an approach for adipose tissue regeneration based on human mesenchymal stem cells and hydrogels as supporting matrix was evaluated. The gelatin-based hydrogels developed in this study were cytocompatible and stem cell adhesion onto hydrogel surfaces was higher as compared to tissue culture polystyrene. Furthermore, the adipogenic differentiation degree was increased. These results are promising for future applications of hydrogels in adipose tissue regeneration strategies. [source] An In Vitro Study of the Ultrasonic Axial Transmission Technique at the Radius: 1-MHz Velocity Measurements Are Sensitive to Both Mineralization and Intracortical Porosity,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 9 2004Emmanuel Bossy Abstract The ultrasonic axial transmission technique allows for investigating skeletal sites such as the cortical layer of long bones (radius, tibia, phalanges). Using synchrotron radiation ,CT, we investigated, in vitro, the relationships between 1-MHz axial transmission SOS measurements at the radius and site-matched measurements of C.Th, POR, MIN, and vBMD. Introduction: The ultrasonic axial transmission technique allows for investigating skeletal sites such as the cortical layer of long bones (radius, tibia, phalanges). Materials and Methods:Using synchrotron radiation ,CT, we investigated, in vitro, the relationships between 1-MHz axial transmission speed of sound (SOS) measurements at the radius and site-matched measurements of cortical thickness (C.Th), intracortical porosity (POR), tissue mineralization (MIN), and volumetric BMD (vBMD). SOS measurements were based on bidirectional axial transmission and were performed with a 1-MHz proprietary probe on 39 excised human radii. Results: The highest correlations between SOS values and bone parameters (R2SOS/POR = 0.28, p < 10,3; R2SOS/MIN = 0.38, p < 10,4; R2SOS/vBMD = 0.57, p < 10,3) were found for bone parameters assessed in a 1-mm-thick periosteal region of the cortex rather than throughout the whole cortex. The observed moderate correlation between SOS and C.Th values (R2SOS/C.Th = 0.20, p < 10,2) disappeared when controlled for other variables. The two best multilinear predictive models, including either BMD alone or the pair of dependent variables MIN and POR (all assessed in the periosteal cortex), were equally accurate in predicting SOS values (R2SOS/(POR,MIN) = 0.59, p < 10,5; R2SOS/vBMD = 0.57, p < 10,5). Conclusion: For the first time, the respective adjusted contributions of POR (,24 m/s%,1) and tissue mineralization (+3.5 m/s/mg/cm,3) to SOS values were assessed. These results suggest potential sensitivity of axial transmission SOS values to changes in cortical bone status under different pathological conditions or treatments affecting POR and/or tissue mineralization. [source] Influence of Bone Tissue Density and Elasticity on Ultrasound Propagation: An In Vitro StudyJOURNAL OF BONE AND MINERAL RESEARCH, Issue 12 2000Francesca de Terlizzi Abstract Ultrasound (US) waves are mechanical vibrations that are applied to a material,bone tissue,in order to study its properties, that is, density, elasticity, and structure. In this study we evaluated in which way density and elasticity of the spongy bone influenced the transmission of 1.25 MHz US pulses. Twelve cylindrical specimens (diameter, 8 mm; height, 5 mm) excised from phalanxes of pig were decalcified with 0.5 M EDTA for different times (0, 2, and 5 days). During these periods, the samples underwent the following investigations: US transmission, density, and elasticity measurements. To assess the homogeneity of decalcification, the cross-sections of some samples were microradiographed. A detailed analysis of the US signal received was performed using velocity, Fourier analysis, and some parameters typical of signal processing technique. A good correlation was found between US velocity and density (r2 = 0.70); a lower correlation was found between velocity and elasticity (r2 = 0.59). If density and elasticity are considered simultaneously, the correlation with the US velocity improves significantly (r2 = 0.84). Fourier analysis enabled us to observe a shift of the main frequency toward lower values as the decalcification process advanced. We also observed that in the regressions weighted for density, US velocity correlated poorly with elasticity (r2 = 0.16), whereas signal processing parameters maintain a good correlation with elasticity (ultrasound peak amplitude [UPA], r2 = 0.48; slope, r2 = 0.62). In this study, it has been observed that when using a signal processing technique to analyze US pulses, it is possible to identify some parameters that are related in different ways to density and to elastic properties of bone. Our results show the potentiality of US technique to separate information on bone density and elasticity that X-ray-based densitometric methods do not provide. [source] The Effect of Denture Cleansing Solutions on the Retention of Yellow Hader Clips: An In Vitro StudyJOURNAL OF PROSTHODONTICS, Issue 3 2007Reena M. Varghese DMD Purpose: To evaluate the retention of yellow Hader clips after exposure to various denture cleansers. Methods: Seven groups of 18 yellow Hader clips each were soaked for the equivalent of 6 months of clinical use in the following denture cleansing solutions: Polident Regular, Polident Overnight, Efferdent, 5.25% Sodium Hypochlorite (NaOCl, 1:10 dilution) 15 min/day, NaOCl (1:10 dilution) 8 hours/day, water and dry (control) group. A Universal Testing Machine, set at a crosshead speed of 2 in/min, pulled each clip once, and the peak load-to-dislodgement was recorded and used as a measure to reflect changes in the retention of the Hader clips. Data were analyzed by a one-way analysis of variance followed by Tukey's HSD test. A p value , 0.05 was considered significant. Results: Denture cleansing solutions affected the retentive values of yellow Hader clips (F= 6.102, p, .0001). Sodium hypochlorite solution, 15 min/day for 6 months, caused an increase in the retentive values of the clips tested with a mean peak load-to-dislodgement of 22.63 ± 1.29 N. In addition, clips soaked in water showed no difference in retentive values when compared with all other groups. Furthermore, Polident Regular, Polident Overnight, Efferdent, and NaOCl (8 hours/day) had no effect on the retentive values of yellow Hader clips. Conclusion: This in vitro study demonstrated that the retention of yellow Hader clips used in implant overdentures is unaffected when soaked in commercial effervescent denture cleansers (Polident 5 Minute, Polident Overnight, and Efferdent) for six simulated months. Sodium hypochlorite statistically increased the single-pull retentive values of the clips, an effect that may not be beneficial. Increased retentive values may be associated with reduced durability of clips; further research is needed to address this issue. [source] Mitochondrial Responses of Normal and Injured Human Skin Fibroblasts Following Low Level Laser Irradiation,An In Vitro StudyPHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2009Innocent L. Zungu Laser irradiation has proved to be very efficient in speeding and improving the quality of healing in pathological conditions of diverse etiologies. However, the mechanisms by which the beneficial effects are attained are not clear. Mitochondria are the primary phototargets during irradiation. The study aimed to establish if laser irradiation had an effect on hypoxic and acidotic cells. The study also aimed to use existing information regarding the possible mechanism of action (established in wounded cells) and apply these principles to acidic and hypoxic irradiated cells to determine whether laser has a stimulatory or inhibitory effect. Cell cultures were modified to simulate conditions of hypoxia (hypoxic gas mixture 95% N2 and 5% O2) and acidosis (pH 6.7) whereas the central scratch model was used to simulate a wound. Cells were irradiated with a helium,neon (632.8 nm, 3 mW cm,2) laser using 5 or 16 J cm,2 on days 1 and 4. Mitochondrial responses were measured 1 or 24 h after laser irradiation by assessing changes in mitochondrial membrane potential (MMP), cyclic AMP, intracellular Ca2+ and adenosine triphosphate (ATP) cell viability. Hypoxia and acidosis significantly reduced MMP when compared with normal nonirradiated control cells. Wounded, hypoxic and acidotic cells irradiated with 5 J cm,2 showed an increase in mitochondrial responses when compared with nonirradiated cells while 16 J cm,2 showed a significant decrease. The study confirmed that laser irradiation with 5 J cm,2 stimulated an increase in intracellular Ca2+ which resulted in an increase in MMP, ATP and cAMP, which ultimately results in photobiomodulation to restore homeostasis of injured cells. [source] Cartilage Tissue Engineering With Demineralized Bone Matrix Gelatin and Fibrin Glue Hybrid Scaffold: An In Vitro StudyARTIFICIAL ORGANS, Issue 2 2010Zheng-Hui Wang Abstract To develop a cartilage-like tissue with hybrid scaffolds of demineralized bone matrix gelatin (BMG) and fibrin, rabbit chondrocytes were cultured on hybrid fibrin/BMG scaffolds in vitro. BMG scaffolds were carefully soaked in a chondrocyte,fibrin suspension, which was polymerized by submerging the constructs into thrombin,calcium chloride solution. Engineered cartilage-like tissue grown on the scaffolds was characterized by histology, immunolocalization, scanning electron microscopy, biochemical assays, and analysis of gene expression at different time points of the in vitro culture. The presence of proteoglycan in the fibrin/BMG hybrid constructs was confirmed by positive toluidine blue and alcian blue staining. Collagen type II exhibited intense immunopositivity at the pericellular matrices. Chondrogenic properties were further demonstrated by the expression of gene-encoded cartilage-specific markers, collagen type II, and aggrecan core protein. The glycosaminoglycan production and hydroxyproline content of tissue grown on the fibrin/BMG hybrid scaffolds were higher than that of the BMG group. In conclusion, the fibrin/BMG hybrid scaffolds may serve as a potential cell delivery vehicle and a structural basis for cartilage tissue engineering. [source] A New Pulsatile Volumetric Device With Biomorphic Valves for the In Vitro Study of the Cardiovascular SystemARTIFICIAL ORGANS, Issue 12 2009Ettore Lanzarone Abstract A pulsatile mock loop system was designed and tested. This prototype represents a versatile, adjustable, and controllable experimental apparatus for in vitro studies of devices meant to interface with the human circulatory system. The pumping system consisted of a ventricular chamber featuring two biomorphic silicone valves as the inlet and outlet valves. The chamber volume is forced by a piston pump moved by a computer-controlled, low-inertia motor. Fluid dynamic tests with the device were performed to simulate physiological conditions in terms of cardiac output (mean flow of 5 and 6 L/min, with beat rates from 60 to 80 bpm), of rheological properties of the processed fluid, and of systemic circulation impedance. The pulsating actuator performed a good replication of the physiological ventricular behavior and was able to guarantee easy control of the waveform parameters. Experimental pressure and flow tracings reliably simulated the physiological profiles, and no hemolytic subatmospheric pressures were revealed. The performance of the prototype valves was also studied in terms of dynamic and static backflow, effective orifice area, and pressure loss, resulting in their applicability for this device. Mechanical reliability was also tested over 8 h. The device proved to be a reliable lab apparatus for in vitro tests; the pumping system also represents a first step toward a possible future application of pulsating perfusion in the clinic arena, such as in short-term cardiac assist and pulsatile cardiopulmonary bypass. [source] Fabrication of a Novel Hybrid Heart Valve Leaflet for Tissue Engineering: An In Vitro StudyARTIFICIAL ORGANS, Issue 7 2009Hao Hong Abstract The objective of this study was to fabricate biomatrix/polymer hybrid heart valve leaflet scaffolds using an electrospinning technique and seeded by mesenchymal stem cells. Mesenchymal stem cells were obtained from rats. Porcine aortic heart valve leaflets were decellularized, coated with basic fibroblast growth factor/chitosan/poly-4-hydroxybutyrate using an electrospinning technique, reseeded, and cultured over a time period of 14 days. Controls were reseeded and cultured over an equivalent time period. Specimens were examined biochemically, histologically, and mechanically. Recellularization of the hybrid heart valve leaflet scaffolds was significantly improved compared to controls. Biochemical and mechanical analysis revealed a significant increase of cell mass, 4-hydroxyproline, collagen, and strength in the hybrid heart valve leaflets compared to controls. This is the first attempt in tissue-engineered heart valves to fabricate hybrid heart valve leaflets using mesenchymal stem cells combined with a slow release technique and an electrospinning technique. [source] Biological Reactions Resulting from Endotoxin Adsorbed on Dialysis Membrane: An In Vitro StudyARTIFICIAL ORGANS, Issue 2 2004Kenji Tsuchida Abstract:, Some types of dialysis membrane are known to adsorb endotoxin (ET). It is suggested that the biocompatibility of dialysis membrane is enhanced by adsorption and inhibition of ET. This study attempts to clarify the membrane-mediated biological reaction of the ET that is adsorbed to a dialysis membrane. After a dialysis circuit was prepared, contaminated dialysate was introduced on the dialysate side of a polyether polymer alloy (PEPA) membrane that adsorbs ET while saline solution or blood were introduced on the blood side, and the difference in ET adsorption between the two set-ups was measured. Further, the side filled with blood was left standing for 2 h, after which the changes in the amount of interleukin 1 receptor antagonist (IL-1Ra) produced from the whole blood were also assayed. Significantly more ET was adsorbed to the dialysis membrane when blood rather than saline was on the other side. In addition, the IL-1Ra production from the dialysis membrane that adsorbed ET was significantly higher. The ET adsorbed to the dialysis membrane may influence a living body even if it does not pass through the membrane. Accordingly, it is difficult to assume that the adsorption of ET to the membrane enhances its biocompatibility. [source] Analysis of the Arterial Blood Pressure Waveform Using Fast Fourier Transform Technique During Left Ventricular Nonpulsatile Assistance: In Vitro StudyARTIFICIAL ORGANS, Issue 7 2000Shinji Kawahito Abstract: The arterial blood pressure waveform is variable during left ventricular assistance. The aim of this study is to examine the correlation between the left ventricular assist device (LVAD) condition and the arterial blood pressure waveform in a fixed cardiac output condition using a mock circuit. This mock circulation loop was composed of an aortic compliance chamber, a left atrial compliance chamber, a pneumatic pulsatile pump as a native heart, and a rotary blood pump representing the LVAD with left atrial drainage. The Fast Fourier Transform technique was utilized to analyze the arterial blood pressure waveform and calculate the pulsatility index (PI) and the pulse power index (PPI). The PI and PPI decreased with the increase of the LVAD rotational speed, exponentially. There was a significant negative correlation between the PI, PPI, and the LVAD rotational speed, flow rate, and assist ratio. The best correlation was observed between the PPI and the assist ratio (r = 0.986). From this viewpoint, an ideal LVAD condition may be estimated from the pulsatility change of the arterial blood pressure waveform. [source] An In Vitro Study Of Coronal Microleakage In Endodontically-Treated Teeth Restored With PostsAUSTRALIAN ENDODONTIC JOURNAL, Issue 3 2003Shohreh Ravanshad DMD. Coronal microleakage has received considerable attention as a factor related to failure of endodontic treatment and much emphasis is placed on the quality of the final restoration. Posts are frequently used for the retention of coronal restorations. These can be custom-made or prefabricated. Many authors have examined coronal microleakage with respect to gutta-percha root fillings and plastic coronal restorations, but few have investigated the coronal seal afforded by various post systems. The seal provided by a cemented post depends on the seal of the cement used. The purpose of this study was to compare coronal microleakage around cast and prefabricated posts using a dye-penetration method. Sixty extracted single-rooted human teeth were chemomechanically prepared. The root canals were filled with gutta-percha and sealer and they were then prepared for standard posts. Six groups, each of 10 teeth, were restored with either cast post or prefrabricated post. The posts were cemented with either glass ionomer cement (GIC), Variolink II or Durelon. The teeth were thermocycled and placed in Indian ink for one week. They were then demineralised and rendered transparent. Linear coronal dye penetration around the post was measured and compared. The least dye-penetration was observed in roots restored with a cast post and Variolink II. Dentatus posts demonstrated the most microleakage. It appears that the dentine-bonding cements have less microleakage than the traditional, non-dentine-bonding cements and adaptation of the post with the canal may be more important than the cement used. [source] |