In Situ Hybridization (in + situ_hybridization)

Distribution by Scientific Domains

Kinds of In Situ Hybridization

  • fluorescence in situ hybridization


  • Selected Abstracts


    Visualization of Helicobacter Species Within the Murine Cecal Mucosa Using Specific Fluorescence In Situ Hybridization

    HELICOBACTER, Issue 2 2005
    Vivian Chan
    ABSTRACT Background., Members of the genus Helicobacter have been associated with colitis development in a number of immunodeficient animal models. While it is known that these organisms can initiate colitis development, the location and spatial distribution of these bacteria within the intestinal tract is currently unknown. In this study, we developed and optimized fluorescence in situ hybridization (FISH) probes specifically for Helicobacter species. Materials and Methods., Based on 16S-RNA gene alignments, two probes specific for the entire family Helicobacteraceae and two probes specific for Helicobacter ganmani and Helicobacter hepaticus were designed. Evaluation of these probes was determined using ATCC reference strains and cecum samples from ten IL-10 knockout mice. The presence of Helicobacter species was determined using FISH and verified using PCR-DGGE and microscopic examination of silver stained sections. Results., Analysis of the ATCC reference strains revealed that the probes HEL274/HEL717 were specific for the family Helicobacteraceae, while HEP642 was specific for H. hepaticus and GAN1237 for H. ganmani. Using these probes, a pattern of spatial localization of the two different Helicobacter species was observed in the cecum tissues of IL-10 knockout mice. This consistently showed that H. ganmani was localized to the lower regions and H. hepaticus to the mid-upper regions of the crypts. Conclusion., We have developed FISH probes specific for the family Helicobacteraceae as well as two individual Helicobacter species. This study will allow the future use of the FISH to better understand host-pathogen interactions in vitro. [source]


    Variations of 18S rDNA Loci Among Six Populations of Paeonia obovata Maxim. (Paeoniaceae) Revealed by Fluorescence In Situ Hybridization

    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 5 2006
    Rui Luo
    Abstract The localization of 18S ribosomal RNA genes (rDNA) by fluorescence in situ hybridization (FISH) had been performed for some species of Paeonia. However, the pattern of 18S rDNA loci among populations is indistinct. In the present study, we localized 18S rDNA loci on meiotic or mitotic chromosomes of six populations of Paeonia obovata Maxim. (Paeoniaceae). Different numbers of rDNA loci were found with different diploid (2n=10) populations, namely eight (Lushi and Mt. Jiuhua populations), 10 (Mt. Taibai population), and seven (Mt. Guandi population), whereas tetraploid (2n=20) populations were all found with 16 loci. All rDNA loci were mapped near telomeres of mitotic chromosomes and there was no chromosome with two loci. The present results show that molecular cytological polymorphism exists among P. obovata diploid populations, indicating that structural variations occurred frequently during the evolutionary history of this species, accompanied with differentiation among populations. (Managing editor: Wei Wang) [source]


    Fluorescence In Situ Hybridization (FISH) in Diagnostic and Investigative Neuropathology

    BRAIN PATHOLOGY, Issue 1 2002
    Christine E. Fuller MD;
    Over the last decade, fluorescence in situ hybridization (FISH) has emerged as a powerful clinical and research tool for the assessment of target DNA dosages within interphase nuclei. Detectable alterations include aneusomies, deletions, gene amplifications, and translocations, with primary advantages to the pathologist including its basis in morphology, its applicability to archival, formalin-fixed paraffin-embedded (FFPE) material, and its similarities to immunohistochemistry. Recent technical advances such as improved hybridization protocols, markedly expanded probe availability resulting from the human genome sequencing initiative, and the advent of high-throughput assays such as gene chip and tissue microarrays have greatly enhanced the applicability of FISH. In our lab, we currently utilize only a limited battery of DNA probes for routine diagnostic purposes, with determination of chromosome 1p and 19q dosage in oligodendroglial neoplasms representing the most common application. However, research applications are numerous and will likely translate into a growing list of clinically useful markers in the near future. In this review, we highlight the advantages and disadvantages of FISH and familiarize the reader with current applications in diagnostic and investigative neuropathology. [source]


    Quantum-Dot-Labeled DNA Probes for Fluorescence In Situ Hybridization (FISH) in the Microorganism Escherichia coli

    CHEMPHYSCHEM, Issue 5 2006
    Sheng-Mei Wu
    Abstract Semiconductor quantum dots (QDs) as a kind of nonisotopic biological labeling material have many unique fluorescent properties relative to conventional organic dyes and fluorescent proteins, such as composition- and size-dependent absorption and emission, a broad absorption spectrum, photostability, and single-dot sensitivity. These properties make them a promising stable and sensitive label, which can be used for long-term fluorescent tracking and subcellular location of genes and proteins. Here, a simple approach for the construction of QD-labeled DNA probes was developed by attaching thiol-ssDNA to QDs via a metal,thiol bond. The as-prepared QD-labeled DNA probes had high dispersivity, bioactivity, and specificity for hybridization. Based on such a kind of probe with a sequence complementary to multiple clone sites in plasmid pUC18, fluorescence in situ hybridization of the tiny bacterium Escherichia coli has been realized for the first time. [source]