Home About us Contact | |||
Improved Vaccines (improved + vaccine)
Selected AbstractsVaccines, coming of age after 200 yearsFEMS MICROBIOLOGY REVIEWS, Issue 1 2000P.Helena Mäkelä Abstract An overview on the short, only 200 years, past history and future expectations in the field of vaccines is presented. The focus is on development trends and potential rather than individual vaccines. While the first vaccines were a result of keen observation, the further development has been tightly dependent on the development of microbiology to provide both the knowledge basis and the technology for new vaccines for new purposes. The post-genomic era just starting therefore promises an exponential increase of vaccine research and new vaccines, both improved vaccines with a greater efficacy and less adverse effects to replace old ones and vaccines for prevention of diseases for which no vaccines exist. Furthermore, fully new applications to prevention or treatment of chronic diseases not traditionally associated with infections are expected. [source] The rational design of biological complexity: A deceptive metaphorPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 6 2007Marc H. V. Van Regenmortel Dr. Abstract Biologists often claim that they follow a rational design strategy when their research is based on molecular knowledge of biological systems. This claim implies that their knowledge of the innumerable causal connections present in biological systems is sufficient to allow them to deduce and predict the outcome of their experimental interventions. The design metaphor is shown to originate in human intentionality and in the anthropomorphic fallacy of interpreting objects, events, and the behavior of all living organisms in terms of goals and purposes. Instead of presenting rational design as an effective research strategy, it would be preferable to acknowledge that advances in biomedicine are nearly always derived from empirical observations based on trial and error experimentation. The claim that rational design is an effective research strategy was tested in the case of current attempts to develop synthetic vaccines, in particular against human immunodeficiency virus. It was concluded that in this field of biomedicine, trial and error experimentation is more likely to succeed than a rational design approach. Current developments in systems biology may give us eventually a better understanding of the immune system and this may enable us in the future to develop improved vaccines. [source] Expression, purification and crystallization of class C acid phosphatases from Francisella tularensis and Pasteurella multocidaACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 3 2009Harkewal Singh Class C nonspecific acid phosphatases are bacterial enzymes that are secreted across the cytoplasmic membrane and hydrolyze a variety of phosphomonoesters at acidic pH. These enzymes are of interest for the development of improved vaccines and clinical diagnostic methods. In one case, the category A pathogen Francisella tularensis, the class C phosphatase plays a role in bacterial fitness. Here, the cloning, expression, purification and crystallization methods for the class C acid phosphatases from F. tularensis and Pasteurella multocida are reported. Crystals of the F. tularensis enzyme diffracted to 2.0,Å resolution and belonged to space group C2221, with one enzyme molecule in the asymmetric unit. Crystals of the P. multocida enzyme diffracted to 1.85,Å resolution and belonged to space group C2, with three molecules in the asymmetric unit. Diffraction patterns from crystals of the P. multocida enzyme exhibited multiple interpenetrating reciprocal-space lattices, indicating epitaxial twinning. Despite this aberrance, autoindexing was robust and the data could be satisfactorily processed to 1.85,Å resolution using MOSFLM and SCALA. [source] Separation of Pure and Immunoreactive Virus-Like Particles Using Gel Filtration Chromatography Following Immobilized Metal Ion Affinity ChromatographyBIOTECHNOLOGY PROGRESS, Issue 2 2001Yu-Shen Cheng A purification process was developed to obtain highly pure rVP2H particles, formed by a structural protein (VP2) of the infectious bursal disease virus (IBDV) with six additional histidine residues at its C-terminus. The ultimate goal was the development of an efficient subunit vaccine against IBDV infection. The particles within the infected High-Five (Hi-5) cell lysates were partially purified by employing immobilized metal ion (Ni2+) affinity chromatography (IMAC). The initial step could recover approximately 85% of immunoreactive rVP2H proteins but failed to separate the rVP2H particles from the free rVP2H proteins or its degraded products. To separate the particulate form from the free form of rVP2H, an additional step was added, which used either gel filtration chromatography or CsCl density gradient ultracentrifugation. Both were able to produce extremely pure rVP2H particles with a buoyant density close to 1.27 g/cm3. However, the former method can process a larger sample volume than does the latter. By integrating IMAC and gel filtration chromatography, 1 mg of extremely pure rVP2H particles was routinely obtained from a 500 mL Hi-5 cell culture broth. The separation of the particulate form from the free form of rVP2H proteins exposes their respective immunogenicity to induce the virus-neutralizing antibodies and the ability to protect chickens from IBDV infection. Additionally, the abundant quantities of pure rVP2H particles coupled with their uniform dimensions facilitates an understanding of higher order structure of the immunogenic particles and can therefore result in improved vaccines against the virus. [source] |